scholarly journals An important mechanism of regional O<sub>3</sub> transport for summer smog over the Yangtze River Delta in eastern China

2018 ◽  
Vol 18 (22) ◽  
pp. 16239-16251 ◽  
Author(s):  
Jun Hu ◽  
Yichen Li ◽  
Tianliang Zhao ◽  
Jane Liu ◽  
Xiao-Ming Hu ◽  
...  

Abstract. Severe ozone (O3) pollution episodes plague a few regions in eastern China at certain times of the year, e.g., the Yangtze River Delta (YRD). However, the formation mechanisms, including meteorological factors, contributing to these severe pollution events remain elusive. A severe summer smog stretched over the YRD region from 22 to 25 August 2016. This event displayed hourly surface O3 concentrations that exceeded 300 µg m−3 on 25 August in Nanjing, an urban area in the western YRD. The weather pattern during this period was characterized by near-surface prevailing easterly winds and continuous high air temperatures. The formation mechanism responsible for this O3 pollution episode over the YRD region, particularly the extreme values over the western YRD, was investigated using observation data and by running simulations with the Weather Research and Forecasting model with Chemistry (WRF-Chem). The results showed that the extremely high surface O3 concentration in the western YRD area on 25 August was largely due to regional O3 transport in the nocturnal residual layer (RL) and the diurnal change in the atmospheric boundary layer. On 24 August, high O3 levels, with peak values of 220 µg m−3, occurred in the daytime mixing layer over the eastern YRD region. During nighttime from 24 to 25 August, a shallow stable boundary layer formed near the surface which decoupled the RL above it from the surface. Ozone in the decoupled RL remained quite constant, which resulted in an O3-rich “reservoir” forming in this layer. This reservoir persisted due to the absence of O3 consumption from nitrogen oxide (NO) titration or dry deposition during nighttime. The prevailing easterly winds in the lower troposphere governed the regional transport of this O3-rich air mass in the nocturnal RL from the eastern to the western YRD. As the regional O3 transport reached the RL over the western YRD, O3 concentrations in the RL accumulated and rose to 200 µg m−3 over the western Nanjing site during the sunrise hours on 25 August. The development of the daytime convective boundary layer after sunrise resulted in the disappearance of the RL, as the vertical mixing in the convective boundary layer uniformly redistributed O3 from the upper levels via the entrainment of O3-rich RL air down to the O3-poor air at the ground. This net downward transport flux reached up to 35 µg m−3 h−1, and contributed a considerable surface O3 accumulation, resulting in severe daytime O3 pollution during the summer smog event on 25 August in the western YRD region. The mechanism of regional O3 transport through the nocturnal RL revealed in this study has great implications regarding understanding O3 pollution and air quality change.

2018 ◽  
Author(s):  
Jun Hu ◽  
Yichen Li ◽  
Tianliang Zhao ◽  
Jane Liu ◽  
Xiao-Ming Hu ◽  
...  

Abstract. Severe ozone (O3) pollution episodes plague a few regions in Eastern China at times, e.g., the Yangtze River Delta (YRD). The formation mechanisms including contributing meteorological factors of these severe pollution events remain elusive. A severe summer smog stretched over the YRD region from August 22 to 25, 2016 with hourly surface O3 concentrations exceeding 300 µg m−3 on August 25 in Nanjing, located in the western YRD. The weather pattern of this episode was characterized by near-surface prevailing easterly wind and continuous high air temperature. The formation mechanism of this O3 episode over the YRD area, particularly the extreme values over western YRD, was investigated using observation data and simulation with the Weather Research and Forecasting model with Chemistry (WRF-Chem). The O3 pollution episode was generally well simulated by the WRF-Chem air quality model. On August 24, the high O3 levels with the peak values of 250 µg m−3 occurred in the daytime mixing layer over the eastern YRD area. During nighttime, a shallow stable boundary layer formed near the surface, which decoupled the residual layer (RL) above it from the surface. O3 in the decoupled RL remained nearly constant, resulting an O3-rich reservoir, due to lack of NO titration and absence of dry deposition. The prevailing easterly wind in the lower troposphere transported the O3-rich air mass in the nocturnal RL from the eastern to western YRD. Consequently, the O3 concentrations in the RL over the western YRD area increased to 170 µg m−3 in the wee hours of August 25, 2016. Due to the growth of the convective boundary layer after the sunrise, entrainment of O3-rich RL air and boundary layer mixing contributed considerably to the rapid increase of surface O3. Process analysis indicated vertical mixing contributed ~ 40 µg m−3 h−1 of O3 accumulation over Nanjing in the morning of August 25, 2016, which played an important role in contributing to the severe daytime O3 pollution in the western YRD area. The mechanism of regional O3 transport through the nocturnal RL has a great implication for understanding O3 pollution in air quality change.


2016 ◽  
Vol 16 (10) ◽  
pp. 6071-6089 ◽  
Author(s):  
Min Xie ◽  
Jingbiao Liao ◽  
Tijian Wang ◽  
Kuanguang Zhu ◽  
Bingliang Zhuang ◽  
...  

Abstract. Anthropogenic heat (AH) emissions from human activities caused by urbanization can affect the city environment. Based on the energy consumption and the gridded demographic data, the spatial distribution of AH emission over the Yangtze River Delta (YRD) region is estimated. Meanwhile, a new method for the AH parameterization is developed in the WRF/Chem model, which incorporates the gridded AH emission data with the seasonal and diurnal variations into the simulations. By running this upgraded WRF/Chem for 2 typical months in 2010, the impacts of AH on the meteorology and air quality over the YRD region are studied. The results show that the AH fluxes over the YRD have been growing in recent decades. In 2010, the annual-mean values of AH over Shanghai, Jiangsu and Zhejiang are 14.46, 2.61 and 1.63 W m−2, respectively, with the high value of 113.5 W m−2 occurring in the urban areas of Shanghai. These AH emissions can significantly change the urban heat island and urban-breeze circulations in the cities of the YRD region. In Shanghai, 2 m air temperature increases by 1.6 °C in January and 1.4 °C in July, the PBLH (planetary boundary layer height) rises up by 140 m in January and 160 m in July, and 10 m wind speed is enhanced by 0.7 m s−1 in January and 0.5 m s−1 in July, with a higher increment at night. The enhanced vertical movement can transport more moisture to higher levels, which causes the decrease in water vapor at ground level and the increase in the upper PBL (planetary boundary layer), and thereby induces the accumulative precipitation to increase by 15–30 % over the megacities in July. The adding of AH can impact the spatial and vertical distributions of the simulated pollutants as well. The concentrations of primary air pollutants decrease near the surface and increase at the upper levels, due mainly to the increases in PBLH, surface wind speed and upward air vertical movement. But surface O3 concentrations increase in the urban areas, with maximum changes of 2.5 ppb in January and 4 ppb in July. Chemical direct (the rising up of air temperature directly accelerates surface O3 formation) and indirect (the decrease in NOx at the ground results in the increase in surface O3) effects can play a significant role in O3 changes over this region. The meteorology and air pollution predictions in and around large urban areas are highly sensitive to the anthropogenic heat inputs, suggesting that AH should be considered in the climate and air quality assessments.


2013 ◽  
Vol 13 (8) ◽  
pp. 21507-21540
Author(s):  
X. Fu ◽  
S. X. Wang ◽  
Z. Cheng ◽  
J. Xing ◽  
B. Zhao ◽  
...  

Abstract. During 1 to 6 May 2011, a dust event was observed in the Yangtze River Delta region (YRD). The highest PM10 concentration reached over 1000 μg m−3 and the visibility was below 3 km. In this study, the Community Multi-scale Air Quality modeling system (CMAQ5.0) coupled with an in-line windblown dust model was used to simulate the formation, spatial and temporal characteristics of this dust event, and analyze its impacts on deposition and photochemistry. The threshold friction velocity for loose smooth surface in the dust model was revised based on Chinese data to improve the model performance. The comparison between predictions and observations indicates the revised model can reproduce the transport and pollution of the event. The simulation results show that the dust event was affected by formation and transport of Mongolian cyclone and cold air. Totally about 695 kt dust particles (PM10) were emitted in Xinjiang Province and Mongolia during 28 to 30 April, the dust band swept northern, eastern China and then arrived in the YRD region on 1 May 2011. The transported dust particles increased the mean surface layer concentrations of PM10 in the YRD region by 372% during 1 to 6 May and the impacts weakened from north to south due to the removal of dust particles along the path. Accompanied by high PM concentration, the dry deposition, wet deposition and total deposition of PM10 in the YRD reached 184.7 kt, 172.6 kt and 357.32 kt, respectively. These deposited particles are very harmful because of their impacts on urban environment as well as air quality and human health when resuspending in the atmosphere. Due to the impacts of mineral dust on atmospheric photolysis, the concentrations of O3 and OH were reduced by 1.5% and 3.1% in the whole China, and by 9.4% and 12.1% in the YRD region, respectively. The work of this manuscript is meaningful for understanding the dust emissions in China as well as for the application of CMAQ in Asia. It is also helpful to understand the formation mechanism and impacts of dust pollution in the YRD.


Author(s):  
Da Gao ◽  
Min Xie ◽  
Xing Chen ◽  
Tijian Wang ◽  
Chenchao Zhan ◽  
...  

Future climate change can impact ozone concentrations by changing regional meteorological factors related to ozone (O3) pollution. To better understand the variations of meteorological factors and their effects on O3 formation processes under future climate conditions, we model the present and the future meteorology and air quality in summer over the Yangtze River Delta (YRD) region by using the Weather Research and Forecasting Model with Chemistry module (WRF/Chem), which is driven by the outputs of Community Climate System Model version 4 (CCSM4). The simulations predict that solar radiation, 2-m air temperature, and wind speed increase in the daytime over most of the YRD region. Absolute humidity and precipitation increase in the north and decrease in the south, while the planetary boundary layer height (PBLH) has an opposite change pattern displaying a decrease in the north and an increase in the south. The southerly wind will be strengthened in the daytime. At night, the change patterns of the meteorological factors are similar to the daytime but with small variations. Meanwhile, O3 and its precursors all increase in the north and decrease in the south. The increases of NOx, volatile organic compounds (VOC), and CO are related with the decreases of PBLH and the input effect of stronger southerly wind, while the decreases are attributed to the output effect of the stronger southerly wind. During the daytime, the increase of surface O3 in the north is dominated by the chemical processes related with the increases of solar radiation, air temperature, and O3 precursors. The decrease of surface O3 in the south is mainly caused by the transport process changing with the strengthened southerly wind. At night, the surface O3 changing the amplitude is less than the daytime. The less O3 variations at night can be attributed to an O3 titration reaction with NO, the changes in NOx concentrations, and the increases of nocturnal PBLH. With the aid of H2O2/HNO3, O3 formation in the YRD region is found to be easily affected by NOx in the future. The findings can help to understand the changing trend of O3 in the YRD region and can propose reasonable pollution control policies.


2015 ◽  
Vol 15 (22) ◽  
pp. 32367-32412 ◽  
Author(s):  
M. Xie ◽  
J. Liao ◽  
T. Wang ◽  
K. Zhu ◽  
B. Zhuang ◽  
...  

Abstract. Anthropogenic heat (AH) emissions from human activities caused by urbanization can affect the city environment. Based on the energy consumption and the gridded demographic data, the spatial distribution of AH emission over the Yangtze River Delta (YRD) region is estimated. Meanwhile, a new method for the AH parameterization is developed in the WRF/Chem model, which incorporates the gridded AH emission data with the seasonal and the diurnal variations into the simulations. By running this upgraded WRF/Chem for two typical months in 2010, the impacts of AH on the meteorology and air quality over the YRD region are studied. The results show that the AH fluxes over YRD have been growing in recent decades. In 2010, the annual mean values of AH over Shanghai, Jiangsu and Zhejiang are 14.46, 2.61 and 1.63 W m−2 respectively, with the high values of 113.5 W m−2 occurring in the urban areas of Shanghai. These AH emissions can significantly change the urban heat island and urban-breeze circulations in the cities of the YRD region. In Shanghai, 2 m air temperature increases by 1.6 °C in January and 1.4 °C in July, the planetary boundary layer height rises up by 140 m in January and 160 m in July, and 10 m wind speed is enhanced by 0.7 m s−1 in January and 0.5 m s−1 in July, with higher increment at night. And the enhanced vertical movement can transport more moisture to higher levels, which causes the decrease of water vapor at the ground level and the increase in the upper PBL, and thereby induces the accumulative precipitation to increase by 15–30 % over the megacities in July. The adding AH can impact the spatial and vertical distributions of the simulated pollutants as well. The concentrations of primary air pollutants decrease near surface and increase at the upper levels, due mainly to the increases of PBLH, surface wind speed and upward air vertical movement. But surface O3 concentrations increase in the urban areas, with maximum changes of 2.5 ppb in January and 4 ppb in July. Chemical direct (the rising up of air temperature directly accelerate surface O3 formation) and indirect (the decrease in NOx at the ground results in the increase of surface O3) effects can play a significant role in O3 changes over this region. The meteorology and air pollution predictions in and around large urban areas are highly sensitive to the anthropogenic heat inputs, suggesting that AH should be considered in any climate and air quality assessment.


2019 ◽  
Vol 58 (11) ◽  
pp. 2349-2362 ◽  
Author(s):  
Yiwen Xu ◽  
Bin Zhu ◽  
Shuangshuang Shi ◽  
Yong Huang

AbstractAn integrated winter field campaign was conducted to investigate the atmospheric boundary layer structure and PM2.5 concentration at three sites over the Yangtze River delta (YRD) in China: Shouxian (a rural area), a site in a northern suburb of Nanjing, and Dongshan (a residential area). Two temperature inversion layers and air pollution events occurred simultaneously from 30 to 31 December 2016, local time, over the YRD. It was found that the two inversion layers were related to the presence of a high pressure system, resulting in divergence in the upper boundary layer and radiative cooling near the ground at night. Dominated by agricultural and residential biomass burning, the surface emission sources from the Shouxian rural area were moderately strong. After the formation of the two inversions, the vertical distribution of PM2.5 concentration below the upper inversion layer was uniform as a result of thorough boundary layer mixing in the earlier hours. During nighttime at the Nanjing site, air pollutant plumes from nearby elevated point sources could not easily diffuse downward/upward between the two inversion layers, which led to a distinct peak in the PM2.5 concentration. At the Dongshan site, the emission sources were weak and the nighttime PM2.5 concentration above 100 m was high. The surface PM2.5 concentration gradually increased from early morning to noon, which was attributed to emissions related to the local residents. The results indicated that the vertical distribution of pollutants was affected by a combination of local emissions, vertical boundary layer structure, and horizontal and vertical transports.


2020 ◽  
Vol 12 (19) ◽  
pp. 7872
Author(s):  
Yijia Huang ◽  
Jiaqi Zhang ◽  
Jinqun Wu

Rapid urbanization has led to a growing number of environmental challenges in large parts of China, where the Yangtze River Delta (YRD) urban agglomerations serve as a typical example. To evaluate the relationship between environmental sustainability gaps and urbanization in 26 cities of the YRD, this study revisited the environmental sustainability assessment (ESA) by combining the metrics of environmental footprints and planetary boundaries at the city level, and then integrated the footprint-boundary ESA framework into decoupling analysis. The results demonstrated considerable spatiotemporal heterogeneity in the environmental sustainability of water use, land use, carbon emissions, nitrogen emissions, phosphorus emissions and PM2.5 emissions across the YRD cities during the study period 2007–2017. Decoupling analysis revealed a positive sign that more than half of the 26 cities had achieved the decoupling of each category of environmental sustainability gaps from urbanization since 2014, especially for nitrogen and phosphorus emissions. On the basis of ESA and decoupling analysis, all the cities were categorized into six patterns, for which the optimal pathways towards sustainable development were discussed in depth. Our study will assist policy makers in formulating more tangible and differentiated policies to achieve decoupling between environmental sustainability gaps and urbanization.


Sign in / Sign up

Export Citation Format

Share Document