scholarly journals Two-scale multi-model ensemble: is a hybrid ensemble of opportunity telling us more?

2018 ◽  
Vol 18 (12) ◽  
pp. 8727-8744 ◽  
Author(s):  
Stefano Galmarini ◽  
Ioannis Kioutsioukis ◽  
Efisio Solazzo ◽  
Ummugulsum Alyuz ◽  
Alessandra Balzarini ◽  
...  

Abstract. In this study we introduce a hybrid ensemble consisting of air quality models operating at both the global and regional scale. The work is motivated by the fact that these different types of models treat specific portions of the atmospheric spectrum with different levels of detail, and it is hypothesized that their combination can generate an ensemble that performs better than mono-scale ensembles. A detailed analysis of the hybrid ensemble is carried out in the attempt to investigate this hypothesis and determine the real benefit it produces compared to ensembles constructed from only global-scale or only regional-scale models. The study utilizes 13 regional and 7 global models participating in the Hemispheric Transport of Air Pollutants phase 2 (HTAP2)–Air Quality Model Evaluation International Initiative phase 3 (AQMEII3) activity and focuses on surface ozone concentrations over Europe for the year 2010. Observations from 405 monitoring rural stations are used for the evaluation of the ensemble performance. The analysis first compares the modelled and measured power spectra of all models and then assesses the properties of the mono-scale ensembles, particularly their level of redundancy, in order to inform the process of constructing the hybrid ensemble. This study has been conducted in the attempt to identify that the improvements obtained by the hybrid ensemble relative to the mono-scale ensembles can be attributed to its hybrid nature. The improvements are visible in a slight increase of the diversity (4 % for the hourly time series, 10 % for the daily maximum time series) and a smaller improvement of the accuracy compared to diversity. Root mean square error (RMSE) improved by 13–16 % compared to G and by 2–3 % compared to R. Probability of detection (POD) and false-alarm rate (FAR) show a remarkable improvement, with a steep increase in the largest POD values and smallest values of FAR across the concentration ranges. The results show that the optimal set is constructed from an equal number of global and regional models at only 15 % of the stations. This implies that for the majority of the cases the regional-scale set of models governs the ensemble. However given the high degree of redundancy that characterizes the regional-scale models, no further improvement could be expected in the ensemble performance by adding yet more regional models to it. Therefore the improvement obtained with the hybrid set can confidently be attributed to the different nature of the global models. The study strongly reaffirms the importance of an in-depth inspection of any ensemble of opportunity in order to extract the maximum amount of information and to have full control over the data used in the construction of the ensemble.

2017 ◽  
Author(s):  
Uarporn Nopmongcol ◽  
Zhen Liu ◽  
Till Stoeckenius ◽  
Greg Yarwood

Abstract. Inter-continental ozone (O3) transport extends the geographic range of O3 air pollution impacts and makes local air pollution management more difficult. Phase 3 of the Air Quality Modeling Evaluation International Initiative (AQMEII-3) is examining the contribution of inter-continental transport to regional air quality by applying regional scale atmospheric models jointly with global models. We investigate methods for tracing O3 from global models within regional models. The CAMx photochemical grid model was used to track contributions from boundary condition (BC) O3 over a North America modeling domain for calendar year 2010 using a built-in tracer module called RTCMC. RTCMC can track BC contributions using chemically reactive tracers and also using inert tracers in which deposition is the only sink for O3. Lack of O3 destruction chemistry in the inert tracer approach leads to over estimation biases that can exceed 10 ppb. The flexibility of RTCMC also allows tracking O3 contributions made by groups of vertical BC layers. The largest BC contributions to seasonal average daily maximum 8-hour averages (MDA8) of O3 over the US are found to be from the mid-troposphere with small contributions from the upper troposphere-lower stratosphere. Contributions from the lower troposphere are shown to not penetrate very far inland. Higher contributions in the Western than the Eastern US, reaching an average of 57 ppb in Denver for the 30 days with highest MDA8 O3 in 2010, present a significant challenge to air quality management approaches based solely on local or US-wide emission reductions. The substantial BC contribution to MDA8 O3 in the Intermountain West means regional models are particularly sensitive to any biases and errors in the BCs. A sensitivity simulation with reduced BC O3 in response to 20 % lower emissions in Asia found a near linear relationship between the BC O3 changes and surface O3 changes in the Western US in all seasons and across the US in fall and winter. However, the surface O3 decreases are small: below 1 ppb in spring and below 0.5 ppb in other seasons.


2018 ◽  
Vol 18 (5) ◽  
pp. 3839-3864 ◽  
Author(s):  
Christian Hogrefe ◽  
Peng Liu ◽  
George Pouliot ◽  
Rohit Mathur ◽  
Shawn Roselle ◽  
...  

Abstract. This study analyzes simulated regional-scale ozone burdens both near the surface and aloft, estimates process contributions to these burdens, and calculates the sensitivity of the simulated regional-scale ozone burden to several key model inputs with a particular emphasis on boundary conditions derived from hemispheric or global-scale models. The Community Multiscale Air Quality (CMAQ) model simulations supporting this analysis were performed over the continental US for the year 2010 within the context of the Air Quality Model Evaluation International Initiative (AQMEII) and Task Force on Hemispheric Transport of Air Pollution (TF-HTAP) activities. CMAQ process analysis (PA) results highlight the dominant role of horizontal and vertical advection on the ozone burden in the mid-to-upper troposphere and lower stratosphere. Vertical mixing, including mixing by convective clouds, couples fluctuations in free-tropospheric ozone to ozone in lower layers. Hypothetical bounding scenarios were performed to quantify the effects of emissions, boundary conditions, and ozone dry deposition on the simulated ozone burden. Analysis of these simulations confirms that the characterization of ozone outside the regional-scale modeling domain can have a profound impact on simulated regional-scale ozone. This was further investigated by using data from four hemispheric or global modeling systems (Chemistry – Integrated Forecasting Model (C-IFS), CMAQ extended for hemispheric applications (H-CMAQ), the Goddard Earth Observing System model coupled to chemistry (GEOS-Chem), and AM3) to derive alternate boundary conditions for the regional-scale CMAQ simulations. The regional-scale CMAQ simulations using these four different boundary conditions showed that the largest ozone abundance in the upper layers was simulated when using boundary conditions from GEOS-Chem, followed by the simulations using C-IFS, AM3, and H-CMAQ boundary conditions, consistent with the analysis of the ozone fields from the global models along the CMAQ boundaries. Using boundary conditions from AM3 yielded higher springtime ozone columns burdens in the middle and lower troposphere compared to boundary conditions from the other models. For surface ozone, the differences between the AM3-driven CMAQ simulations and the CMAQ simulations driven by other large-scale models are especially pronounced during spring and winter where they can reach more than 10 ppb for seasonal mean ozone mixing ratios and as much as 15 ppb for domain-averaged daily maximum 8 h average ozone on individual days. In contrast, the differences between the C-IFS-, GEOS-Chem-, and H-CMAQ-driven regional-scale CMAQ simulations are typically smaller. Comparing simulated surface ozone mixing ratios to observations and computing seasonal and regional model performance statistics revealed that boundary conditions can have a substantial impact on model performance. Further analysis showed that boundary conditions can affect model performance across the entire range of the observed distribution, although the impacts tend to be lower during summer and for the very highest observed percentiles. The results are discussed in the context of future model development and analysis opportunities.


2017 ◽  
Author(s):  
Christian Hogrefe ◽  
Peng Liu ◽  
George Pouliot ◽  
Rohit Mathur ◽  
Shawn Roselle ◽  
...  

Abstract. This study analyzes simulated regional-scale ozone burdens both near the surface and aloft, estimates process contributions to these burdens, and calculates the sensitivity of the simulated regional-scale ozone burden to several key model inputs with a particular emphasis on boundary conditions derived from hemispheric or global scale models. The Community Multiscale Air Quality (CMAQ) model simulations supporting this analysis were performed over the continental U.S. for the year 2010 within the context of the Air Quality Model Evaluation International Initiative (AQMEII) and Task Force on Hemispheric Transport of Air Pollution (TF-HTAP) activities. CMAQ Process Analysis (PA) results highlight the dominant role of horizontal and vertical advection on the ozone burden in the mid-to-upper troposphere and lower stratosphere. Vertical mixing, including mixing by convective clouds, couple fluctuations in free tropospheric ozone to ozone in lower layers. Hypothetical bounding scenarios were performed to quantify the effects of emissions, boundary conditions, and ozone dry deposition on the simulated ozone burden. Analysis of these simulations confirms that the characterization of ozone outside the regional-scale modeling domain can have a profound impact on simulated regional-scale ozone. This was further investigated by using data from four hemispheric or global modeling systems (Chemistry – Integrated Forecasting Model (C-IFS), CMAQ extended for hemispheric applications (H-CMAQ), GEOS-Chem, and AM3) to derive alternate boundary conditions for the regional-scale CMAQ simulations. The regional-scale CMAQ simulations using these four different boundary conditions showed that the largest ozone abundance in the upper layers was simulated when using boundary conditions from GEOS-Chem, followed by the simulations using C-IFS, AM3, and H-CMAQ boundary conditions, consistent with the analysis of the ozone fields from the global models along the CMAQ boundaries. Using boundary conditions from AM3 yielded higher springtime ozone columns burdens in the mid- and lower troposphere compared to boundary conditions from the other models. For surface ozone, the differences between the AM3-driven CMAQ simulations and the CMAQ simulations driven by other large-scale models are especially pronounced during spring and winter where they can reach more than 10 ppb for seasonal mean ozone mixing ratios and as much as 15 ppb for domain-averaged daily maximum 8-hr average ozone on individual days. In contrast, the differences between the C-IFS, GEOS-Chem, and H-CMAQ driven regional-scale CMAQ simulations are typically smaller. Comparing simulated surface ozone mixing ratios to observations and computing seasonal and regional model performance statistics revealed that boundary conditions can have a substantial impact on model performance. Further analysis showed that boundary conditions can affect model performance across the entire range of the observed distribution, although the impacts tend to be lower during summer and for the very highest observed percentiles. The results are discussed in the context of future model development and analysis opportunities.


2017 ◽  
Vol 17 (16) ◽  
pp. 9931-9943 ◽  
Author(s):  
Uarporn Nopmongcol ◽  
Zhen Liu ◽  
Till Stoeckenius ◽  
Greg Yarwood

Abstract. Intercontinental ozone (O3) transport extends the geographic range of O3 air pollution impacts and makes local air pollution management more difficult. Phase 3 of the Air Quality Modeling Evaluation International Initiative (AQMEII-3) is examining the contribution of intercontinental transport to regional air quality by applying regional-scale atmospheric models jointly with global models. We investigate methods for tracing O3 from global models within regional models. The CAMx photochemical grid model was used to track contributions from boundary condition (BC) O3 over a North American modeling domain for calendar year 2010 using a built-in tracer module called RTCMC. RTCMC can track BC contributions using chemically reactive tracers and also using inert tracers in which deposition is the only sink for O3. Lack of O3 destruction chemistry in the inert tracer approach leads to overestimation biases that can exceed 10 ppb. The flexibility of RTCMC also allows tracking O3 contributions made by groups of vertical BC layers. The largest BC contributions to seasonal average daily maximum 8 h averages (MDA8) of O3 over the US are found to be from the mid-troposphere (over 40 ppb) with small contributions (a few ppb) from the upper troposphere–lower stratosphere. Contributions from the lower troposphere are shown to not penetrate very far inland. Higher contributions in the western than the eastern US, reaching an average of 57 ppb in Denver for the 30 days with highest MDA8 O3 in 2010, present a significant challenge to air quality management approaches based solely on local or US-wide emission reductions. The substantial BC contribution to MDA8 O3 in the Intermountain West means regional models are particularly sensitive to any biases and errors in the BCs. A sensitivity simulation with reduced BC O3 in response to 20 % lower emissions in Asia found a near-linear relationship between the BC O3 changes and surface O3 changes in the western US in all seasons and across the US in fall and winter. However, the surface O3 decreases are small: below 1 ppb in spring and below 0.5 ppb in other seasons.


2018 ◽  
Author(s):  
Stefano Galmarini ◽  
Ioannis Kioutsioukis ◽  
Efisio Solazzo ◽  
Ummugulsum Alyuz ◽  
Alessandra Balzarini ◽  
...  

Abstract. In this study we introduce a hybrid ensemble consisting of air quality models operating at both the global and regional scale. The work is motivated by the fact that these different types of models treat specific portions of the atmospheric spectrum with different levels of detail and it is hypothesized that their combination can generate an ensemble that performs better than mono-scale ensembles. A detailed analysis of the hybrid ensemble is carried out in the attempt to investigate this hypothesis and determine the real benefit it produces compared to ensembles constructed from only global scale or only regional scale models. The study utilizes 13 regional and 7 global models participating in the HTAP2/AQMEII3 activity and focuses on surface ozone concentrations over Europe for the year 2010. Observations from 405 monitoring stations are used for the evaluation of the ensemble performance. The analysis first compares the modelled and measured spectra and then assesses the properties of the mono-scale ensembles, particularly their level of redundancy, in order to inform the process of constructing the hybrid ensemble. The main conclusion of this study is that the improvements obtained by the hybrid ensemble relative to the mono-scale ensembles can be attributed to its hybrid nature. Moreover, the optimal set is constructed from an equal number of global and regional models at only 15 % of the stations. Finally, the study reaffirms the importance of an in-depth inspection of any ensemble of opportunity in order to extract the maximum amount of information and to have full control over the data used in the construction of the ensemble.


2016 ◽  
Author(s):  
Rogier Westerhoff ◽  
Paul White ◽  
Zara Rawlinson

Abstract. Large-scale models and satellite data are increasingly used to characterise groundwater and its recharge at the global scale. Although these models have the potential to fill in data gaps and solve trans-boundary issues, they are often neglected in smaller-scale studies, since data are often coarse or uncertain. Large-scale models and satellite data could play a more important role in smaller-scale (i.e., national or regional) studies, if they could be adjusted to fit that scale. In New Zealand, large-scale models and satellite data are not used for groundwater recharge estimation at the national scale, since regional councils (i.e., the water managers) have varying water policy and models are calibrated at the local scale. Also, some regions have many localised ground observations (but poor record coverage), whereas others are data-sparse. Therefore, estimation of recharge is inconsistent at the national scale. This paper presents an approach to apply large-scale, global, models and satellite data to estimate rainfall recharge at the national to regional scale across New Zealand. We present a model, NGRM, that is largely inspired by the global-scale WaterGAP recharge model, but is improved and adjusted using national data. The NGRM model uses MODIS-derived ET and vegetation satellite data, and the available nation-wide datasets on rainfall, elevation, soil and geology. A valuable addition to the recharge estimation is the model uncertainty estimate, based on variance, covariance and sensitivity of all input data components in the model environment. This research shows that, with minor model adjustments and use of improved input data, large-scale models and satellite data can be used to derive rainfall recharge estimates, including their uncertainty, at the smaller scale, i.e., national and regional scale of New Zealand. The estimated New Zealand recharge of the NGRM model compare well to most local and regional lysimeter data and recharge models. The NGRM is therefore assumed to be capable to fill in gaps in data-sparse areas and to create more consistency between datasets from different regions, i.e., to solve trans-boundary issues. This research also shows that smaller-scale recharge studies in New Zealand should include larger boundaries than only a (sub-)aquifer, and preferably the whole catchment. This research points out the need for improved collaboration on the international to national to regional levels to further merge large-scale (global) models to smaller (i.e., national or regional) scales. Future research topics should, collaboratively, focus on: improvement of rainfall-runoff and snowmelt methods; inclusion of river recharge; further improvement of input data (rainfall, evapotranspiration, soil and geology); and the impact of recharge uncertainty in mountainous and irrigated areas.


2015 ◽  
Vol 15 (21) ◽  
pp. 31385-31432
Author(s):  
Y. H. Lee ◽  
D. T. Shindell ◽  
G. Faluvegi ◽  
R. W. Pinder

Abstract. We have investigated how future air quality and climate change are influenced by the US air quality regulations that existed or were proposed in 2013 and a hypothetical climate mitigation policy that reduces 2050 CO2 emissions to be 50 % below 2005 emissions. Using NASA GISS ModelE2, we look at the impacts in year 2030 and 2055. The US energy-sector emissions are from the GLIMPSE project (GEOS-Chem LIDORT Integrated with MARKAL for the Purpose of Scenario Exploration), and other US emissions and the rest of the world emissions are based on the RCP4.5 scenario. The US air quality regulations are projected to have a strong beneficial impact on US air quality and public health in the future but result in positive radiative forcing. Surface PM2.5 is reduced by ~ 2 μg m−3 on average over the US, and surface ozone by ~ 8 ppbv. The improved air quality prevents about 91 400 premature deaths in the US, mainly due to the PM2.5 reduction (~ 74 200 lives saved). The air quality regulations reduces the light-reflecting aerosols (i.e., sulfate and organic matter) more than the light-absorbing species (i.e., black carbon and ozone), leading a strong positive radiative forcing (RF) by both aerosols direct and indirect forcing: total RF is ~ 0.04 W m−2 over the globe; ~ 0.8 W m−2 over the US. Under the hypothetical climate policy, future US energy relies less on coal and thus SO2 emissions are noticeably reduced. This provides air quality co-benefits, but it leads to climate dis-benefits over the US. In 2055, the US mean total RF is +0.22 W m−2 due to positive aerosol direct and indirect forcing, while the global mean total RF is −0.06 W m−2 due to the dominant negative CO2 RF (instantaneous RF). To achieve a regional-scale climate benefit via a climate policy, it is critical (1) to have multi-national efforts to reduce GHGs emissions and (2) to target emission reduction of light-absorbing species (e.g., BC and O3) on top of long-lived species. The latter is very desirable as the resulting climate benefit occurs faster and provides co-benefits to air quality and public health.


2015 ◽  
Vol 15 (4) ◽  
pp. 4427-4461 ◽  
Author(s):  
T. P. Canty ◽  
L. Hembeck ◽  
T. P. Vinciguerra ◽  
D. C. Anderson ◽  
D. L. Goldberg ◽  
...  

Abstract. Regulatory air quality models, such as the Community Multiscale Air Quality model (CMAQ), are used by federal and state agencies to guide policy decisions that determine how to best achieve adherence with National Ambient Air Quality Standards for surface ozone. We use observations of ozone and its important precursor NO2 to test the representation of the photochemistry and emission of ozone precursors within CMAQ. Observations of tropospheric column NO2 from the Ozone Monitoring Instrument (OMI), retrieved by two independent groups, show that the model overestimates urban NO2 and underestimates rural NO2 under all conditions examined for July and August 2011 in the US Northeast. The overestimate of the urban to rural ratio of tropospheric column NO2 for this baseline run of CMAQ (CB05 mechanism, mobile NOx emissions from the National Emissions Inventory; isoprene emissions from MEGAN v2.04) suggests this model may under estimate the importance of interstate transport of NOx. This CMAQ simulation leads to a considerable overestimate of the 2 month average of 8 h daily maximum surface ozone in the US Northeast, as well as an overestimate of 8 h ozone at AQS sites during days when the state of Maryland experienced NAAQS exceedances. We have implemented three changes within CMAQ motivated by OMI NO2 as well as aircraft observations obtained in July 2011 during the NASA DISCOVER-AQ campaign: (a) the modeled lifetime of organic nitrates within CB05 has been reduced by a factor of 10, (b) emissions of NOx from mobile sources has been reduced by a factor of 2, and (c) isoprene emissions have been reduced by using MEGAN v2.10 rather than v2.04. Compared to the baseline simulation, the CMAQ run using all three of these changes leads to a considerably better simulation of the ratio of urban to rural column NO2, better agreement with the 2 month average of daily 8 h maximum ozone in the US Northeast, fewer number of false positives of an ozone exceedance throughout the domain, as well as an unbiased simulation of surface ozone at ground based AQS sites in Maryland that experienced an ozone exceedance during July and August 2007. These modifications to CMAQ may provide a framework for use in studies focused on achieving future adherence to specific air quality standards for surface ozone by reducing emission of NOx from various anthropogenic sectors.


2021 ◽  
Vol 880 (1) ◽  
pp. 012004
Author(s):  
H Mahidin ◽  
M T Latif ◽  
A Hamdan ◽  
J Salleh ◽  
D Dominick ◽  
...  

Abstract Sarawak Region of Malaysia is currently experiencing a high demand for capital needs such as transformation forest to plantations, economic development, and improving transportation systems. Those land cover changes will increase primary pollutant emissions and trigger surface O3 formation. Surface O3 is a secondary pollutant and a significant greenhouse gas contributing to climate change and declining air quality. In this study, variations in surface O3 concentrations at urban and suburban sites in Sarawak were explored using the Malaysian Department of Environment data spanning a two-year cycle (2018-2019). The primary aim of this study is to ascertain the variation of surface O3 concentrations reported at four monitoring stations in Sarawak, namely Kuching (SQ1) (Urban), Sibu (SQ2) (Suburban), Bintulu (SQ3) (Suburban), and Miri (SQ4) (Suburban). The study also analysed the relationship between O3 distribution and nitrogen oxides (NO and NO2). The findings showed that O3 concentrations observed in the region during the study period were lower than the maximum permissible value of 100 ppbv suggested by the Malaysian Ambient Air Quality Standard (2020). SQ4 (Miri) at suburban sites recorded the highest average surface O3 concentrations with an hourly average and daily maximum O3 concentration of 15.7 and 89.5 ppbv, respectively. Temperatures, UV exposure, and wind speed all impact the concentration of surface O3 in Sarawak. In all stations, concentrations of O3 were inversely linked with NO, NO2, and relative humidity (RH). This research will assist the relevant agency in forecast, monitor, and mitigate the level of O3 in the ambient environment, especially in the Sarawak Region.


2019 ◽  
Author(s):  
Li Zhang ◽  
Meiyun Lin ◽  
Andrew O. Langford ◽  
Larry W. Horowitz ◽  
Christoph J. Senff ◽  
...  

Abstract. The detection and attribution of high background ozone (O3) events in the southwestern U.S. is challenging but relevant to the effective implementation of the lowered National Ambient Air Quality Standard (NAAQS; 70 ppbv). Here we leverage intensive field measurements from the Fires, Asian, and Stratospheric TransportLas Vegas Ozone Study (FAST-LVOS) in MayJune 2017, alongside high-resolution simulations with two global models (GFDL-AM4 and GEOS-Chem), to pinpoint the sources of O3 during high-O3 events. We show stratospheric influence on four out of the ten events with daily maximum 8-hour average (MDA8) surface O3 above 65 ppbv in the greater Las Vegas region. While O3 produced from regional anthropogenic emissions dominates pollution in the Las Vegas Valley, stratospheric intrusions can mix with regional pollution to push surface O3 above 70 ppbv. GFDL-AM4 captures the key characteristics of deep stratospheric intrusions consistent with ozonesondes, lidar profiles, and co-located measurements of O3, CO, and water vapor at Angel Peak, whereas GEOS-Chem has difficulty simulating the observed features and underestimates observed O3 by ~ 20 ppbv at the surface. The two models also differ substantially during a wildfire event, with GEOS-Chem estimating ~ 15 ppbv greater O3, in better agreement with lidar observations. At the surface, the two models bracket the observed MDA8 O3 values during the wildfire event. Both models capture the large-scale transport of Asian pollution, but neither resolves some fine-scale pollution plumes, as evidenced from aerosol backscatter, aircraft, and satellite measurements. U.S. background O3 estimates from the two models differ by 5 ppbv on average and up to 15 ppbv episodically. Our multi-model approach tied closely to observational analysis yields process insights, suggesting that elevated background O3 may pose challenges to achieving a potentially lower NAAQS level (e.g., 65 ppbv) in the southwestern U.S.


Sign in / Sign up

Export Citation Format

Share Document