scholarly journals Biomass burning and urban emission impacts in the Andes Cordillera region based on in situ measurements from the Chacaltaya observatory, Bolivia (5240 m a.s.l.)

2019 ◽  
Vol 19 (23) ◽  
pp. 14805-14824
Author(s):  
Aurélien Chauvigné ◽  
Diego Aliaga ◽  
Karine Sellegri ◽  
Nadège Montoux ◽  
Radovan Krejci ◽  
...  

Abstract. This study documents and analyses a 4-year continuous record of aerosol optical properties measured at the Global Atmosphere Watch (GAW) station of Chacaltaya (CHC; 5240 m a.s.l.), in Bolivia. Records of particle light scattering and particle light absorption coefficients are used to investigate how the high Andean Cordillera is affected by both long-range transport and by the fast-growing agglomeration of La Paz–El Alto, located approximately 20 km away and 1.5 km below the sampling site. The extended multi-year record allows us to study the properties of aerosol particles for different air mass types, during wet and dry seasons, also covering periods when the site was affected by biomass burning in the Bolivian lowlands and the Amazon Basin. The absorption, scattering, and extinction coefficients (median annual values of 0.74, 12.14, and 12.96 Mm−1 respectively) show a clear seasonal variation with low values during the wet season (0.57, 7.94, and 8.68 Mm−1 respectively) and higher values during the dry season (0.80, 11.23, and 14.51 Mm−1 respectively). The record is driven by variability at both seasonal and diurnal scales. At a diurnal scale, all records of intensive and extensive aerosol properties show a pronounced variation (daytime maximum, night-time minimum), as a result of the dynamic and convective effects. The particle light absorption, scattering, and extinction coefficients are on average 1.94, 1.49, and 1.55 times higher respectively in the turbulent thermally driven conditions than the more stable conditions, due to more efficient transport from the boundary layer. Retrieved intensive optical properties are significantly different from one season to the other, reflecting the changing aerosol emission sources of aerosol at a larger scale. Using the wavelength dependence of aerosol particle optical properties, we discriminated between contributions from natural (mainly mineral dust) and anthropogenic (mainly biomass burning and urban transport or industries) emissions according to seasons and local circulation. The main sources influencing measurements at CHC are from the urban area of La Paz–El Alto in the Altiplano and from regional biomass burning in the Amazon Basin. Results show a 28 % to 80 % increase in the extinction coefficients during the biomass burning season with respect to the dry season, which is observed in both tropospheric dynamic conditions. From this analysis, long-term observations at CHC provide the first direct evidence of the impact of biomass burning emissions of the Amazon Basin and urban emissions from the La Paz area on atmospheric optical properties at a remote site all the way to the free troposphere.

2019 ◽  
Author(s):  
Chauvigné Aurélien ◽  
Diego Aliaga ◽  
Marcos Andrade ◽  
Patrick Ginot ◽  
Radovan Krejci ◽  
...  

Abstract. We present the variability of aerosol particle optical properties measured at the global Atmosphere Watch (GAW) station Chacaltaya (5240 m a.s.l.). The in-situ mountain site is ideally located to study regional impacts of the densely populated urban area of La Paz/El Alto, and the intensive activity in the Amazonian basin. Four year measurements allow to study aerosol particle properties for distinct atmospheric conditions as stable and turbulent layers, different airmass origins, as well as for wet and dry seasons, including biomass-burning influenced periods. The absorption, scattering and extinction coefficients (median annual values of 0.74, 12.14 and 12.96 Mm−1 respectively) show a clear seasonal variation with low values during the wet season (0.57, 7.94 and 8.68 Mm−1 respectively) and higher values during the dry season (0.80, 11.23 and 14.51 Mm−1 respectively). These parameters also show a pronounced diurnal variation (maximum during daytime, minimum during night-time, as a result of the dynamic and convective effects of leading to lower atmospheric layers reaching the site during daytime. Retrieved intensive optical properties are significantly different from one season to the other, showing the influence of different sources of aerosols according to the season. Both intensive and extensive optical properties of aerosols were found to be different among the different atmospheric layers. The particle light absorption, scattering and extinction coefficients are in average 1.94, 1.49 and 1.55 times higher, respectively, in the turbulent layer compared to the stable layer. We observe that the difference is highest during the wet season and lowest during the dry season. Using wavelength dependence of aerosol particle optical properties, we discriminated contributions from natural (mainly mineral dust) and anthropogenic (mainly biomass-burning and urban transport or industries) emissions according to seasons and tropospheric layers. The main sources influencing measurements at CHC are arising from the urban area of La Paz/El Alto, and regional biomass-burning from the Amazonian basin. Results show a 28 % to 80 % increase of the extinction coefficients during the biomass-burning season with respect to the dry season, which is observed in both tropospheric layers. From this analyse, long-term observations at CHC provides the first direct evidence of the impact of emissions in the Amazonian basin on atmospheric optical properties far away from their sources, all the way to the stable layer.


1996 ◽  
Vol 101 (D14) ◽  
pp. 19465-19481 ◽  
Author(s):  
B. N. Holben ◽  
A. Setzer ◽  
T. F. Eck ◽  
A. Pereira ◽  
I. Slutsker

2019 ◽  
Author(s):  
Jia Yin Sun ◽  
Cheng Wu ◽  
Dui Wu ◽  
Chunlei Cheng ◽  
Mei Li ◽  
...  

Abstract. Black carbon (BC) is an important climate forcer in the atmosphere. Amplification of light absorption can occur by coatings on BC aerosols, an effect that remains one of the major sources of uncertainties for accessing the radiative forcing of BC. In this study, the absorption enhancement factor (Eabs) was quantified by the minimum R squared (MRS) method using elemental carbon (EC) as the tracer. Two field campaigns were conducted in urban Guangzhou at the Jinan university super site during both wet season (July 31–September 10, 2017) and dry season (November 15, 2017–January 15, 2018) to explore the temporal dynamics of BC optical properties. The average concentration of EC was 1.94 ± 0.93 and 2.81 ± 2.01 μgC m−3 in the wet and dry seasons, respectively. Mass absorption efficiency at 520 nm by primary aerosols (MAEp520) determined by MRS exhibit a strong seasonality (8.6 m2g−1 in the wet season and 16.8 m2g−1 in the dry season). Eabs520 was higher in the wet season (1.51 ± 0.50) and lower in the dry season (1.29 ± 0.28). Absorption Ångström exponent (AAE470-660) in the dry season (1.46 ± 0.12) were higher than that in the wet season (1.37 ± 0.10). Collective evidence showed that the active biomass burning (BB) in dry season effectively altered optical properties of BC, leading to elevated MAE, MAEp and AAE in dry season comparing to those in wet season. Diurnal Eabs520 was positively correlated with AAE470-660 (R2 = 0.71) and negatively correlated with the AE33 aerosol loading compensation parameter (k) (R2 = 0.74) in the wet season, but these correlations were significantly weaker in the dry season, which may be related to the impact of BB. This result suggests that lensing effect was dominating the AAE diurnal variability during the wet season. The effect of secondary processing on Eabs diurnal dynamic were also investigated. The Eabs520 exhibit a clear dependency on secondary organic carbon to organic carbon ratio (SOC/OC). Eabs520 correlated well with nitrate, implying that gas-particle partitioning of semi-volatile compounds may potentially play an important role in steering the diurnal fluctuation of Eabs520. In dry season, the diurnal variability of Eabs520 was associated with photochemical aging as evidenced by the good correlation (R2 = 0.69) between oxidant concentrations (Ox=O3+NO2) and Eabs520.


2011 ◽  
Vol 11 (17) ◽  
pp. 8899-8912 ◽  
Author(s):  
L. V. Rizzo ◽  
A. L. Correia ◽  
P. Artaxo ◽  
A. S. Procópio ◽  
M. O. Andreae

Abstract. In this study, we examine the spectral dependence of aerosol absorption at different sites and seasons in the Amazon Basin. The analysis is based on measurements performed during three intensive field experiments at a pasture site (Fazenda Nossa Senhora, Rondônia) and at a primary forest site (Cuieiras Reserve, Amazonas), from 1999 to 2004. Aerosol absorption spectra were measured using two Aethalometers: a 7-wavelength Aethalometer (AE30) that covers the visible (VIS) to near-infrared (NIR) spectral range, and a 2-wavelength Aethalometer (AE20) that measures absorption in the UV and in the NIR. As a consequence of biomass burning emissions, about 10 times greater absorption values were observed in the dry season in comparison to the wet season. Power law expressions were fitted to the measurements in order to derive the absorption Ångström exponent, defined as the negative slope of absorption versus wavelength in a log-log plot. At the pasture site, about 70 % of the absorption Ångström exponents fell between 1.5 and 2.5 during the dry season, indicating that biomass burning aerosols have a stronger spectral dependence than soot carbon particles. Ångström exponents decreased from the dry to the wet season, in agreement with the shift from biomass burning aerosols, predominant in the fine mode, to biogenic and dust aerosols, predominant in the coarse mode. The lowest absorption Ångström exponents (90 % of data below 1.5) were observed at the forest site during the dry season. Also, results indicate that low absorption coefficients were associated with low Ångström exponents. This finding suggests that biogenic aerosols from Amazonia have a weaker spectral dependence for absorption than biomass burning aerosols, contradicting our expectations of biogenic particles behaving as brown carbon. In a first order assessment, results indicate a small (<1 %) effect of variations in absorption Ångström exponents on 24-h aerosol forcings, at least in the spectral range of 450–880 nm. Further studies should be taken to assess the corresponding impact in the UV spectral range. The assumption that soot spectral properties represent all ambient light absorbing particles may cause a misjudgment of absorption towards the UV, especially in remote areas. Therefore, it is recommended to measure aerosol absorption at several wavelengths to accurately assess the impact of non-soot aerosols on climate and on photochemical atmospheric processes.


2011 ◽  
Vol 11 (4) ◽  
pp. 11547-11577 ◽  
Author(s):  
L. V. Rizzo ◽  
A. L. Correia ◽  
P. Artaxo ◽  
A. S. Procópio ◽  
M. O. Andreae

Abstract. In this study, we examine the spectral dependence of aerosol absorption at different sites and seasons in the Amazon Basin. The analysis is based on measurements performed during three intensive field experiments at a pasture site (Fazenda Nossa Senhora, Rondônia) and at a primary forest site (Cuieiras Reserve, Amazonas), from 1999 to 2004. Aerosol absorption spectra were measured using two Aethalometers: a 7-wavelength Aethalometer (AE30) that covers the visible (VIS) to near-infrared (NIR) spectral range, and a 2-wavelength Aethalometer (AE20) that measures absorption in the UV and in the visible. As a consequence of biomass burning emissions, about 10 times greater absorption values were observed in the dry season in comparison to the wet season. Power law expressions were fitted to the measurements in order to derive the Ångström exponent for absorption, defined as the negative slope of absorption vs. wavelength in a log-log plot. At the pasture site, about 70% of the Ångström exponents fell between 1.5 and 2.5 during the dry season, indicating that biomass burning aerosols have a stronger spectral dependence than soot carbon particles. Ångström exponents decreased from the dry to the wet season, in agreement with the shift from biomass burning aerosols, predominant in the fine mode, to biogenic and dust aerosols, predominant in the coarse mode. The lowest Ångström exponents (90% of data below 1.5) were observed at the forest site during the dry season. Also, results indicate that low absorption coefficients were associated with Ångström exponents below 1.0. This finding suggests that biogenic aerosols from Amazonia may have a weak spectral dependence for absorption, contradicting our expectations of biogenic particles behaving as brown carbon. Nevertheless, additional measurements should be taken in the future, to provide a complete picture of biogenic aerosol absorption spectral characteristics from different seasons and geographic locations. The assumption that soot spectral properties represent all ambient light absorbing particles may cause a misjudgment of absorption towards the UV, especially in remote areas. Therefore, it is recommended to measure aerosol absorption at several wavelengths from UV to near IR to accurately assess the impact of non-soot aerosols on climate and on photochemical atmospheric processes.


2007 ◽  
Vol 7 (4) ◽  
pp. 12657-12686 ◽  
Author(s):  
K. Hungershöfer ◽  
K. Zeromskiene ◽  
Y. Iinuma ◽  
G. Helas ◽  
J. Trentmann ◽  
...  

Abstract. A better characterisation of the optical properties of biomass burning aerosol as a function of the burning conditions is required in order to quantify their effects on climate and atmospheric chemistry. Controlled laboratory combustion experiments with different fuel types were carried out at the combustion facility of the Max Planck Institute for Chemistry (Mainz, Germany) as part of the 'Impact of Vegetation Fires on the Composition and Circulation of the Atmosphere' (EFEU) project. Using the measured size distributions as well as mass scattering and absorption efficiencies, Mie calculations provided mean effective refractive indices of 1.60−0.010i and 1.56−0.010i (λ=0.55 μm) for smoke particles emitted from the combustion of savanna grass and an African hardwood (musasa), respectively. The relatively low imaginary parts suggest that the light-absorbing carbon of the investigated fresh biomass burning aerosol is only partly graphitized, resulting in strongly scattering and less absorbing particles. While the observed variability in mass scattering efficiencies was consistent with changes in particle size, the changes in the mass absorption efficiency can only be explained, if the chemical composition of the particles varies with combustion conditions.


2020 ◽  
Author(s):  
Ting Wang ◽  
Rujin Huang ◽  
Lu Yang ◽  
Wei Yuan ◽  
Yuquan Gong

&lt;p&gt;Atmospheric brown carbon (BrC) has significant impact on Earth&amp;#8217;s radiative budget. However, due to our very limited knowledge about the relationship between BrC light absorption and the associated sources, the estimation for radiative effects of BrC is still largely constrained. In this study, we combine ultraviolet&amp;#8722;visible (UV&amp;#8722;vis) spectroscopy measurements and chemical analyses of BrC samples collected from January to December 2015 in urban Beijing, to investigated the sources of atmospheric BrC. The multiple liner regression model was applied to apportion the contributions of individual primary and secondary organic aerosol (OA) source components to light absorption of BrC. Our results indicated that biomass burning emission and secondary formation are highly absorbing up to 500 nm, and their contributions increased with the wavelengths. In contrast, the contribution of traffic emission and coal combustion to total absorption decreased with the wavelength and the large contributions were mostly found at shorter wavelengths. Then the mass absorption efficiency (MAE) of major light-absorbing components were estimated, which can provide a support to estimate the impact of BrC from these sources on the climate. The positive matrix factorization model were also used to verify the contributions of different source components of BrC absorption at 365 nm. The results consistently demonstrate that the biomass burning and secondary formation contributes significantly to the overall absorption, followed by coal combustion and traffic emission.&lt;/p&gt;


2022 ◽  
Author(s):  
Junjun Deng ◽  
Hao Ma ◽  
Xinfeng Wang ◽  
Shujun Zhong ◽  
Zhimin Zhang ◽  
...  

Abstract. Brown carbon (BrC) aerosols exert vital impacts on climate change and atmospheric photochemistry due to their light absorption in the wavelength range from near-ultraviolet (UV) to visible light. However, the optical properties and formation mechanisms of ambient BrC remain poorly understood, limiting the estimation of their radiative forcing. In the present study, fine aerosols (PM2.5) were collected during 2016–2017 on a day/night basis over urban Tianjin, a megacity in North China, to obtain seasonal and diurnal patterns of atmospheric water-soluble BrC. There were obvious seasonal but no evident diurnal variations in light absorption properties of BrC. In winter, BrC showed much stronger light absorbing ability since mass absorption efficiency at 365 nm (MAE365) (1.54 ± 0.33 m2 g−1), which was 1.8 times larger than that (0.84 ± 0.22 m2 g−1) in summer. Direct radiative effects by BrC absorption relative to black carbon in the UV range were 54.3 ± 16.9 % and 44.6 ± 13.9 %, respectively. In addition, five fluorescent components in BrC, including three humic-like fluorophores and two protein-like fluorophores were identified with excitation-emission matrix fluorescence spectrometry and parallel factor (PARAFAC) analysis. The lowly-oxygenated components contributed more to winter and nighttime samples, while more-oxygenated components increased in summer and daytime samples. The higher humification index (HIX) together with lower biological index (BIX) and fluorescence index (FI) suggest that the chemical compositions of BrC were associated with a high aromaticity degree in summer and daytime due to photobleaching. Fluorescent properties indicate that wintertime BrC were predominantly affected by primary emissions and fresh secondary organic aerosol (SOA), while summer ones were more influenced by aging processes. Results of source apportionments using organic molecular compositions of the same set of aerosols reveal that fossil fuel combustion and aging processes, primary bioaerosol emission, biomass burning, and biogenic and anthropogenic SOA formation were the main sources of BrC. Biomass burning contributed much larger to BrC in winter and at nighttime, while biogenic SOA contributed more in summer and at daytime. Especially, our study highlights that primary bioaerosol emission is an important source of BrC in urban Tianjin in summer.


Atmósfera ◽  
2020 ◽  
Author(s):  
Abdulaziz Tunde Yakubu ◽  
Naven Chetty

The optical characteristics of atmospheric aerosol are vital in the determination of the regional climate trend. Biomass burning is typically known to influence aerosol optical characteristics. Following the incessant biomass burning and the recent drop in precipitation over Western Cape, the aerosol optical properties with a focus on the impact of biomass burning are studied over Cape Town using data from AERONET (Aerosol Robotic Network) and MODIS (Moderate Resolution Imaging Spectroradiometer). In general terms, measurements from both platforms significantly agree on the estimates of aerosol optical depth (AOD) and water vapor content (WVC). The mean AOD 0.075 (± 0.022) and Ångström exponent (AE) 0.63 (± 0.19) derived from AERONET demonstrate the dominance of coarse mode aerosol typical of maritime aerosol. Similarly, aerosol particle size distributions display the predominance of coarse mode particles. However, the derived refractive index is more representative of urban-industrial aerosol. Also, estimated back-trajectories show that more than 70% of the aerosol particles over the region originate over the ocean. Atmospheric vapor increases from winter to summer and mainly influenced by air temperature, supersaturation level, and absorbing aerosol. Furthermore, two significant sources accounted for biomass burning related to high AOD values: local biomass burning and regionally transported aged smoke majorly from elsewhere in Sothern Africa.


2018 ◽  
Vol 11 (10) ◽  
pp. 4103-4116 ◽  
Author(s):  
Liye Zhu ◽  
Maria Val Martin ◽  
Luciana V. Gatti ◽  
Ralph Kahn ◽  
Arsineh Hecobian ◽  
...  

Abstract. Biomass burning is a significant source of trace gases and aerosols to the atmosphere, and the evolution of these species depends acutely on where they are injected into the atmosphere. GEOS-Chem is a chemical transport model driven by assimilated meteorological data that is used to probe a variety of scientific questions related to atmospheric composition, including the role of biomass burning. This paper presents the development and implementation of a new global biomass burning emissions injection scheme in the GEOS-Chem model. The new injection scheme is based on monthly gridded Multi-angle Imaging SpectroRadiometer (MISR) global plume-height stereoscopic observations in 2008. To provide specific examples of the impact of the model updates, we compare the output from simulations with and without the new MISR-based injection height scheme to several sets of observations from regions with active fires. Our comparisons with Arctic Research on the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) aircraft observations show that the updated injection height scheme can improve the ability of the model to simulate the vertical distribution of peroxyacetyl nitrate (PAN) and carbon monoxide (CO) over North American boreal regions in summer. We also compare a simulation for October 2010 and 2011 to vertical profiles of CO over the Amazon Basin. When coupled with larger emission factors for CO, a simulation that includes the new injection scheme also better matches selected observations in this region. Finally, the improved injection height improves the simulation of monthly mean surface CO over California during July 2008, a period with large fires.


Sign in / Sign up

Export Citation Format

Share Document