scholarly journals Source apportionment of volatile organic compounds in the northwest Indo-Gangetic Plain using a positive matrix factorization model

2019 ◽  
Vol 19 (24) ◽  
pp. 15467-15482 ◽  
Author(s):  
◽  
Baerbel Sinha ◽  
Vinayak Sinha

Abstract. In this study we undertook quantitative source apportionment for 32 volatile organic compounds (VOCs) measured at a suburban site in the densely populated northwest Indo-Gangetic Plain using the US EPA PMF 5.0 model. Six sources were resolved by the PMF model. In descending order of their contribution to the total VOC burden these are “biofuel use and waste disposal” (23.2 %), “wheat-residue burning”(22.4 %), “cars” (16.2 %), “mixed daytime sources”(15.7 %) “industrial emissions and solvent use”(11.8 %), and “two-wheelers” (8.6 %). Wheat-residue burning is the largest contributor to the total ozone formation potential (32.4 %). For the emerging contaminant isocyanic acid, photochemical formation from precursors (37 %) and wheat-residue burning (25 %) were the largest contributors to human exposure. Wheat-residue burning was also the single largest source of the photochemical precursors of isocyanic acid, namely, formamide, acetamide and propanamide, indicating that this source must be most urgently targeted to reduce human concentration exposure to isocyanic acid in the month of May. Our results highlight that for accurate air quality forecasting and modeling it is essential that emissions are attributed only to the months in which the activity actually occurs. This is important for emissions from crop residue burning, which occur in May and from mid-October to the end of November. The SOA formation potential is dominated by cars (36.9 %) and two-wheelers (21.1 %), which also jointly account for 47% of the human class I carcinogen benzene in the PMF model. This stands in stark contrast to various emission inventories which estimate only a minor contribution of the transport sector to the benzene exposure (∼10 %) and consider residential biofuel use, agricultural residue burning and industry to be more important benzene sources. Overall it appears that none of the emission inventories represent the regional emissions in an ideal manner. Our PMF solution suggests that transport sector emissions may be underestimated by GAINSv5.0 and EDGARv4.3.2 and overestimated by REASv2.1, while the combined effect of residential biofuel use and waste disposal emissions as well as the VOC burden associated with solvent use and industrial sources may be overestimated by all emission inventories. The agricultural waste burning emissions of some of the detected compound groups (ketones, aldehydes and acids) appear to be missing in the EDGARv4.3.2 inventory.

2019 ◽  
Author(s):  
◽  
Baerbel Sinha ◽  
Vinayak Sinha

Abstract. In this study we undertook quantitative source apportionment for 32 volatile organic compounds (VOCs) measured at a suburban site in the densely populated North-West Indo–Gangetic Plain using the US EPA PMF 5.0 Model. Six sources were resolved by the PMF model namely biofuel use and waste disposal, wheat-residue burning, industrial emissions and solvent use, cars, two-wheelers and mixed daytime sources. The biofuel and waste disposal, wheat residue burning, industrial emissions and solvent use, combined traffic sources, mixed daytime sources accounted for 23.2 %, 22.4 %, 11.8 %, 25.1 %, and 15.7 % of the total VOC mass concentration respectively; 18.1 %, 32.4 %, 7.3 %, 21.9 %, and 20.3 % of the total O3 formation potential respectively; and 14.9 %, 13.9 %, 10.1 %, 59.0 %, and 2.2 % of the SOA formation potential, respectively. Further the factors contributed 24.6 %, 8.5 %, 20.1 %, 46.8 %, and 0 %, respectively, to the human class I carcinogen benzene and 18.4 %, 25.4 %, 5.9 %, 13.3 %, and 36.9 %, respectively, to the toxic emerging contaminant isocyanic acid. Evaluation of emission inventories using the in-situ data derived PMF solution revealed that among EDGARv4.2, REASv2.1 and GAINSv5.0, the GAINSv5.0 emission inventory for year 2010, best agreed with the in-situ data derived PMF results for May 2012.


Atmosphere ◽  
2018 ◽  
Vol 9 (10) ◽  
pp. 390 ◽  
Author(s):  
Fenjuan Wang ◽  
Zhenyi Zhang ◽  
Costanza Acciai ◽  
Zhangxiong Zhong ◽  
Zhaokai Huang ◽  
...  

The positive matrix factorization (PMF) model is widely used for source apportionment of volatile organic compounds (VOCs). The question about how to select the proper number of factors, however, is rarely studied. In this study, an integrated method to determine the most appropriate number of sources was developed and its application was demonstrated by case study in Wuhan. The concentrations of 103 ambient volatile organic compounds (VOCs) were measured intensively using online gas chromatography/mass spectrometry (GC/MS) during spring 2014 in an urban residential area of Wuhan, China. During the measurement period, the average temperature was approximately 25 °C with very little domestic heating and cooling. The concentrations of the most abundant VOCs (ethane, ethylene, propane, acetylene, n-butane, benzene, and toluene) in Wuhan were comparable to other studies in urban areas in China and other countries. The newly developed integrated method to determine the most appropriate number of sources is in combination of a fixed minimum threshold value for the correlation coefficient, the average weighted correlation coefficient of each species, and the normalized minimum error. Seven sources were identified by using the integrated method, and they were vehicular emissions (45.4%), industrial emissions (22.5%), combustion of coal (14.7%), liquefied petroleum gas (LPG) (9.7%), industrial solvents (4.4%), and pesticides (3.3%) and refrigerants. The orientations of emission sources have been characterized taking into account the frequency of wind directions and contributions of sources in each wind direction for the measurement period. It has been concluded that the vehicle exhaust contribution is greater than 40% distributed in all directions, whereas industrial emissions are mainly attributed to the west southwest and south southwest.


2014 ◽  
Vol 14 (12) ◽  
pp. 5871-5891 ◽  
Author(s):  
M. Wang ◽  
M. Shao ◽  
W. Chen ◽  
B. Yuan ◽  
S. Lu ◽  
...  

Abstract. Understanding the sources of volatile organic compounds (VOCs) is essential for ground-level ozone and secondary organic aerosol (SOA) abatement measures. We made VOC measurements at 27 sites and online observations at an urban site in Beijing from July 2009 to January 2012. Based on these measurement data, we determined the spatial and temporal distribution of VOCs, estimated their annual emission strengths based on their emission ratios relative to carbon monoxide (CO), and quantified the relative contributions of various sources using the chemical mass balance (CMB) model. These results from ambient measurements were compared with existing emission inventories to evaluate the spatial distribution, species-specific emissions, and source structure of VOCs in Beijing. The measured VOC distributions revealed a hotspot in the southern suburban area of Beijing, whereas current emission inventories suggested that VOC emissions were concentrated in downtown areas. Compared with results derived from ambient measurements, the annual inventoried emissions of oxygenated VOC (OVOC) species and C2–C4 alkanes may be underestimated, while the emissions of styrene and 1,3-butadiene may be overestimated by current inventories. Source apportionment using the CMB model identified vehicular exhaust as the most important VOC source, with the relative contribution of 49%, in good agreement with the 40–51% estimated by emission inventories. The relative contribution of paint and solvent utilization obtained from the CMB model was 14%, significantly lower than the value of 32% reported by one existing inventory. Meanwhile, the relative contribution of liquefied petroleum gas (LPG) usage calculated using the CMB model was 6%, whereas LPG usage contribution was not reported by current emission inventories. These results suggested that VOC emission strengths in southern suburban area of Beijing, annual emissions of C2–C4 alkanes, OVOCs and some alkenes, and the contributions of solvent and paint utilization and LPG usage in current inventories all require significant revisions.


Elem Sci Anth ◽  
2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Changmin Cho ◽  
Jason M. St. Clair ◽  
Jin Liao ◽  
Glenn M. Wolfe ◽  
Seokhan Jeong ◽  
...  

Large industrial facilities, such as petrochemical complexes, have decisive effects on regional air quality: directly due to their own hazardous volatile organic compounds (VOCs) emissions and indirectly due to their contribution to secondary air pollution. In South Korea, pronounced ozone and particulate matter issues have been reported in industrial areas. In this study, we develop a new top-down VOC emission rate estimation method using in situ airborne formaldehyde (HCHO) observations in the downwind plume of the Daesan Petrochemical Complex (DPC) in South Korea during the 2016 Korea–United States Air Quality (KORUS-AQ) mission. On May 22, we observed a peak HCHO mole fraction of 12 ppb after a transport time of 2.5 h (distance approximately 36 km) under conditions where the HCHO photochemical lifetime was 1.8 h. Box model calculations indicate that this elevated HCHO is mainly due to secondary production (more than 90% after 2 h of plume aging) from various VOC precursors including ethene, propene, and 1,3-butadiene. We estimate a lower limit for yearly DPC VOC emissions of 31 (±8.7) × 103 MT/year for HCHO precursors and 53 (±15) × 103 MT/year for all measured primary VOCs. These estimates are 1.5–2.5 times higher than the latest Korean emission inventories, KORUSv5. This method is beneficial not only by tracking the sources, sinks, and evolution of HCHO but also by validating existing emission inventories.


Sign in / Sign up

Export Citation Format

Share Document