scholarly journals Estimating cloud condensation nuclei number concentrations using aerosol optical properties: role of particle number size distribution and parameterization

2019 ◽  
Vol 19 (24) ◽  
pp. 15483-15502 ◽  
Author(s):  
Yicheng Shen ◽  
Aki Virkkula ◽  
Aijun Ding ◽  
Krista Luoma ◽  
Helmi Keskinen ◽  
...  

Abstract. The concentration of cloud condensation nuclei (CCN) is an essential parameter affecting aerosol–cloud interactions within warm clouds. Long-term CCN number concentration (NCCN) data are scarce; there are a lot more data on aerosol optical properties (AOPs). It is therefore valuable to derive parameterizations for estimating NCCN from AOP measurements. Such parameterizations have already been made, and in the present work a new parameterization is presented. The relationships between NCCN, AOPs, and size distributions were investigated based on in situ measurement data from six stations in very different environments around the world. The relationships were used for deriving a parameterization that depends on the scattering Ångström exponent (SAE), backscatter fraction (BSF), and total scattering coefficient (σsp) of PM10 particles. The analysis first showed that the dependence of NCCN on supersaturation (SS) can be described by a logarithmic fit in the range SS <1.1 %, without any theoretical reasoning. The relationship between NCCN and AOPs was parameterized as NCCN≈((286±46)SAE ln(SS/(0.093±0.006))(BSF − BSFmin) + (5.2±3.3))σsp, where BSFmin is the minimum BSF, in practice the 1st percentile of BSF data at a site to be analyzed. At the lowest supersaturations of each site (SS ≈0.1 %), the average bias, defined as the ratio of the AOP-derived and measured NCCN, varied from ∼0.7 to ∼1.9 at most sites except at a Himalayan site where the bias was >4. At SS >0.4 % the average bias ranged from ∼0.7 to ∼1.3 at most sites. For the marine-aerosol-dominated site Ascension Island the bias was higher, ∼1.4–1.9. In other words, at SS >0.4 % NCCN was estimated with an average uncertainty of approximately 30 % by using nephelometer data. The biases were mainly due to the biases in the parameterization related to the scattering Ångström exponent (SAE). The squared correlation coefficients between the AOP-derived and measured NCCN varied from ∼0.5 to ∼0.8. To study the physical explanation of the relationships between NCCN and AOPs, lognormal unimodal particle size distributions were generated and NCCN and AOPs were calculated. The simulation showed that the relationships of NCCN and AOPs are affected by the geometric mean diameter and width of the size distribution and the activation diameter. The relationships of NCCN and AOPs were similar to those of the observed ones.

2005 ◽  
Vol 5 (6) ◽  
pp. 11703-11728 ◽  
Author(s):  
V. Aaltonen ◽  
H. Lihavainen ◽  
V.-M. Kerminen ◽  
M. Komppula ◽  
J. Hatakka ◽  
...  

Abstract. Three years of continuous measurements of aerosol optical properties and simultaneous aerosol number size distribution measurements at Pallas GAW station, a remote subarctic site in the northern border of the boreal forest zone, have been analysed. The scattering coefficient at 550 nm varied from 0.2 to 94.4 Mm−1 with an average of 7.1±8.6 Mm−1. Both the scattering and backscattering coefficients had a clear seasonal cycle with an autumn minimum and a 4–5 times higher summer maximum. The scattering was dominated by submicron aerosols and especially so during late summer and autumn. The Ångström exponent had a clear seasonal pattern with maximum values in late summer and minimum values during wintertime. The highest hemispheric backscattering fraction values were observed in autumn, indicating clean air with few scattering particles and a particle size distribution strongly dominated by ultrafine particles. To analyse the influence of air mass origin on the aerosol optical properties a trajectory climatology was applied to the Pallas aerosol data. The most polluted trajectory patterns represented air masses from the Kola Peninsula, Scandinavia and Russia as well as long-range transport from Britain and Eastern Europe. These air masses had the largest average scattering and backscattering coefficients for all seasons. Higher than average values of the Ångström exponent were also observed in connection with transport from these areas.


2019 ◽  
Author(s):  
Yicheng Shen ◽  
Aki Virkkula ◽  
Aijun Ding ◽  
Krista Luoma ◽  
Helmi Keskinen ◽  
...  

Abstract. The concentration of cloud condensation nuclei (CCN) is an essential parameter affecting aerosol-cloud interactions within warm clouds. Long-term CCN number concentration (NCCN) data are scarce, there are a lot more data on aerosol optical properties (AOPs). It is therefore valuable to derive parameterizations for estimating NCCN from AOP measurements. Such parameterizatios have been made earlier, in the present work a new one is presented. The relationships between AOPs, NCCN and particle number size distributions were investigated based on in-situ measurement data from six stations in very different environments around the world. The parameterization derived here depends on the scattering Ångström exponent (SAE), backscatter fraction (BSF) and total scattering coefficient (σsp) of PM10 particles. The analysis showed that the dependence of NCCN on supersaturation SS% is logarithmic: NCCN ≈ ((287 ± 45)SAE10ln(SS%/(0.093 ± 0.006))(BSF − BSFmin) + (5.2 ± 3.3))σsp. At the lowest supersaturations of each site (SS% ≈ 0.1) the average bias, defined as the ratio of the AOP-derived and measured NCCN varied from ~ 0.7 to ~ 1.5 at most sites except at a Himalayan site where bias was > 4. At SS% > 0.3 the average bias ranged from ~ 0.7 to ~ 1.3 at all sites. In other words, at SS% > 0.3 NCCN was estimated with an average uncertainty of approximately 30 % by using nephelometer data. The squared correlation coefficients between the AOP-derived and measured NCCN varied from ~ 0.5 to ~ 0.8. The coefficients of the parameterization derived for the different sites were linearly related to each other. To study the explanation of this, lognormal unimodal particle size distributions were generated and NCCN and AOPs were calculated. The simulation yielded similar relationships between the coefficients as in the field data. It also showed that the relationships of the coefficients are affected by the geometric mean diameter and width of the size distribution and the activation diameter.


2016 ◽  
Author(s):  
M. Ealo ◽  
A. Alastuey ◽  
A. Ripoll ◽  
N. Pérez ◽  
M. C. Minguillón ◽  
...  

Abstract. The study of Saharan dust events (SDE) and biomass burning (BB) emissions are both topic of great scientific interest since they are frequent and important polluting scenarios affecting air quality and climate. The main aim of this work is evaluating the feasibility of using near real-time in situ aerosol optical measurements for the detection of these atmospheric events in the Western Mediterranean Basin (WMB). With this aim, intensive aerosol optical properties (SAE: scattering Ångström exponent, AAE: absorption Ångström exponent, SSAAE: single scattering albedo Ångström exponent, and g: asymmetry parameter) were derived from multi-wavelength aerosol light scattering, hemispheric backscattering and absorption measurements performed at regional (Montseny; MSY, 720 m a.s.l.) and continental (Montsec; MSA, 1570 m a.s.l.) background sites in the WMB. A sensitivity study aiming at calibrating the measured intensive optical properties for SDE and BB detection is presented and discussed. The detection of Saharan dust events (SDE) by means of the SSAAE parameter and Ångström matrix depended on the altitude of the measurement station, and on SDE intensity. At MSA (mountain-top site) SSAAE detected around 85% of SDE compared with 50% at MSY station, where pollution episodes dominated by fine anthropogenic particles frequently masked the effect of mineral dust on optical properties during less intense SDE. Furthermore, an interesting feature of SSAAE was its capability to detect the presence of mineral dust after the end of SDE. Thus, resuspension processes driven by summer regional atmospheric circulations and dry conditions after SDE favored the accumulation of mineral dust at regional level having important consequences for air quality. On average, SAE, AAE and g ranged between -0.7 and 1, 1.3 and 2.5, and 0.5 and 0.75, respectively, during SDE. Based on the Aethalometer model, biomass burning (BB) contribution to equivalent black carbon (BC) accounted for 36% and 40% at MSY and MSA respectively. Linear relationships were found between AAE and %BCbb, with AAE values reaching around 1.5 when %BCbb was higher than 50%. BB contribution to organic matter (OM) at MSY was around 30%. Thus FF combustion sources showed important contributions to both BC and OM in the region under study. Results for OM source apportionment showed good agreement with simultaneous biomass burning organic aerosol (BBOA) and hydrocarbon-like organic aerosol (HOA) calculated from Positive Matrix Factorization (PMF) applied to simultaneous Aerosol Mass Spectrometer (ACSM) measurements. A wildfire episode was identified at MSY, showing AAE values up to 2 when daily BB contributions to BC and OM were 73% and 78% respectively.


2017 ◽  
Vol 17 (19) ◽  
pp. 12097-12120 ◽  
Author(s):  
Lauren Schmeisser ◽  
Elisabeth Andrews ◽  
John A. Ogren ◽  
Patrick Sheridan ◽  
Anne Jefferson ◽  
...  

Abstract. Knowledge of aerosol size and composition is important for determining radiative forcing effects of aerosols, identifying aerosol sources and improving aerosol satellite retrieval algorithms. The ability to extrapolate aerosol size and composition, or type, from intensive aerosol optical properties can help expand the current knowledge of spatiotemporal variability in aerosol type globally, particularly where chemical composition measurements do not exist concurrently with optical property measurements. This study uses medians of the scattering Ångström exponent (SAE), absorption Ångström exponent (AAE) and single scattering albedo (SSA) from 24 stations within the NOAA/ESRL Federated Aerosol Monitoring Network to infer aerosol type using previously published aerosol classification schemes.Three methods are implemented to obtain a best estimate of dominant aerosol type at each station using aerosol optical properties. The first method plots station medians into an AAE vs. SAE plot space, so that a unique combination of intensive properties corresponds with an aerosol type. The second typing method expands on the first by introducing a multivariate cluster analysis, which aims to group stations with similar optical characteristics and thus similar dominant aerosol type. The third and final classification method pairs 3-day backward air mass trajectories with median aerosol optical properties to explore the relationship between trajectory origin (proxy for likely aerosol type) and aerosol intensive parameters, while allowing for multiple dominant aerosol types at each station.The three aerosol classification methods have some common, and thus robust, results. In general, estimating dominant aerosol type using optical properties is best suited for site locations with a stable and homogenous aerosol population, particularly continental polluted (carbonaceous aerosol), marine polluted (carbonaceous aerosol mixed with sea salt) and continental dust/biomass sites (dust and carbonaceous aerosol); however, current classification schemes perform poorly when predicting dominant aerosol type at remote marine and Arctic sites and at stations with more complex locations and topography where variable aerosol populations are not well represented by median optical properties. Although the aerosol classification methods presented here provide new ways to reduce ambiguity in typing schemes, there is more work needed to find aerosol typing methods that are useful for a larger range of geographic locations and aerosol populations.


2017 ◽  
Vol 17 (2) ◽  
pp. 1143-1160 ◽  
Author(s):  
Bingliang Zhuang ◽  
Tijian Wang ◽  
Jane Liu ◽  
Shu Li ◽  
Min Xie ◽  
...  

Abstract. Observational studies of aerosol optical properties are useful for reducing uncertainties in estimations of aerosol radiative forcing and forecasting visibility. In this study, the observed near-surface aerosol optical properties in urban Nanjing are analysed from March 2014 to February 2016. Results show that near-surface urban aerosols in Nanjing are mainly from local emissions and the surrounding regions. They have lower loadings but are more scattering than aerosols in most cities in China. The annual mean aerosol extinction coefficient (EC), single-scattering albedo (SSA) and asymmetry parameter (ASP) at 550 nm are 381.96 Mm−1, 0.9 and 0.57, respectively. The aerosol absorption coefficient (AAC) is about 1 order of magnitude smaller than its scattering coefficient (SC). However, the absorbing aerosol has a larger Ångström exponent (AAE) value, 1.58 at 470∕660 nm, about 0.2 larger than the scattering aerosols (SAE). All the aerosol optical properties follow a near-unimodal pattern, and their values are mostly concentrated around their averages, accounting for more than 60 % of the total samplings. Additionally, they have substantial seasonality and diurnal variations. High levels of SC and AAC all appear in winter due to higher aerosol and trace gas emissions. AAE (ASP) is the smallest (largest) in summer, possibly because of high relative humidity (RH) which also causes considerably larger SC and smaller SAE, although intensive gas-to-particle transformation could produce a large number of finer scattering aerosols in this season. Seasonality of EC is different from the columnar aerosol optical depth. Larger AACs appear during the rush hours of the day while SC and back-scattering coefficient (Bsp) only peak in the early morning. Aerosols are fresher in the daytime than at night-time, leading to their larger Ångström exponent and smaller ASP. Different temporal variations between AAC and SC cause the aerosols to be more absorbing (smaller SSA) in autumn, winter and around rush hours. ASP has a good quasi-log-normal growth trend with increasing SC when RH is below 60 %. The correlation between AAC and SC at the site is close but a little smaller than that in suburban Nanjing in spring. Atmospheric visibility decreases exponentially with increasing EC or SC, more sharply in spring and summer, and it could be further deteriorated with increasing SSA and ASP.


2017 ◽  
Author(s):  
Lauren Schmeisser ◽  
Elisabeth Andrews ◽  
John A. Ogren ◽  
Patrick Sheridan ◽  
Anne Jefferson ◽  
...  

Abstract. Knowledge of aerosol size and composition is important for determining radiative forcing effects of aerosols, identifying aerosol sources, and improving aerosol satellite retrieval algorithms. The ability to extrapolate aerosol size and composition, or type, from intensive aerosol optical properties can help expand the current knowledge of spatio-temporal variability of aerosol type globally, particularly where chemical composition measurements do not exist concurrently with optical property measurements. This study uses medians of scattering Ångström exponent (SAE), absorption Ångström exponent (AAE) and single scattering albedo (SSA) from 24 stations within the NOAA federated aerosol network to infer aerosol type using previously published aerosol classification schemes. Three methods are implemented to obtain a best estimate of dominant aerosol type at each station using aerosol optical properties. The first method plots station medians into an AAE vs. SAE plot space, so that a unique combination of intensive properties corresponds with an aerosol type. The second typing method expands on the first by introducing a multivariate cluster analysis, which aims to group stations with similar optical characteristics, and thus similar dominant aerosol type. The third and final classification method pairs 3-day backward air mass trajectories with median aerosol optical properties to explore the relationship between trajectory origin (proxy for likely aerosol type) and aerosol intensive parameters, while allowing for multiple dominant aerosol types at each station. The three aerosol classification methods have some common, and thus robust, results. In general, estimating dominant aerosol type using optical properties is best suited for site locations with a stable and homogenous aerosol population, particularly continental polluted (carbonaceous aerosol), marine polluted (carbonaceous aerosol mixed with sea salt), and continental dust/biomass sites (dust and carbonaceous aerosol); however, current classification schemes perform poorly when predicting dominant aerosol type at remote marine and Arctic sites, and at stations with more complex locations and topography where variable aerosol populations are not well represented by median optical properties. Although the aerosol classification methods presented here provide new ways to reduce ambiguity in typing schemes, there is more work needed to find aerosol typing methods that are useful for a larger range of geographic locations and aerosol populations.


2018 ◽  
Vol 18 (1) ◽  
pp. 405-425 ◽  
Author(s):  
Huizheng Che ◽  
Bing Qi ◽  
Hujia Zhao ◽  
Xiangao Xia ◽  
Thomas F. Eck ◽  
...  

Abstract. Aerosol pollution in eastern China is an unfortunate consequence of the region's rapid economic and industrial growth. Here, sun photometer measurements from seven sites in the Yangtze River Delta (YRD) from 2011 to 2015 were used to characterize the climatology of aerosol microphysical and optical properties, calculate direct aerosol radiative forcing (DARF) and classify the aerosols based on size and absorption. Bimodal size distributions were found throughout the year, but larger volumes and effective radii of fine-mode particles occurred in June and September due to hygroscopic growth and/or cloud processing. Increases in the fine-mode particles in June and September caused AOD440 nm > 1.00 at most sites, and annual mean AOD440 nm values of 0.71–0.76 were found at the urban sites and 0.68 at the rural site. Unlike northern China, the AOD440 nm was lower in July and August (∼ 0.40–0.60) than in January and February (0.71–0.89) due to particle dispersion associated with subtropical anticyclones in summer. Low volumes and large bandwidths of both fine-mode and coarse-mode aerosol size distributions occurred in July and August because of biomass burning. Single-scattering albedos at 440 nm (SSA440 nm) from 0.91 to 0.94 indicated particles with relatively strong to moderate absorption. Strongly absorbing particles from biomass burning with a significant SSA wavelength dependence were found in July and August at most sites, while coarse particles in March to May were mineral dust. Absorbing aerosols were distributed more or less homogeneously throughout the region with absorption aerosol optical depths at 440 nm ∼ 0.04–0.06, but inter-site differences in the absorption Angström exponent indicate a degree of spatial heterogeneity in particle composition. The annual mean DARF was −93 ± 44 to −79 ± 39 W m−2 at the Earth's surface and ∼ −40 W m−2 at the top of the atmosphere (for the solar zenith angle range of 50 to 80∘) under cloud-free conditions. The fine mode composed a major contribution of the absorbing particles in the classification scheme based on SSA, fine-mode fraction and extinction Angström exponent. This study contributes to our understanding of aerosols and regional climate/air quality, and the results will be useful for validating satellite retrievals and for improving climate models and remote sensing algorithms.


2006 ◽  
Vol 6 (5) ◽  
pp. 1155-1164 ◽  
Author(s):  
V. Aaltonen ◽  
H. Lihavainen ◽  
V.-M. Kerminen ◽  
M. Komppula ◽  
J. Hatakka ◽  
...  

Abstract. Three years of continuous measurements of aerosol optical properties and simultaneous aerosol number size distribution measurements at Pallas GAW station, a remote subarctic site in the northern border of the boreal forest zone, have been analysed. The scattering coefficient at 550 nm varied from 0.2 to 94.4 Mm−1 with an average of 7.1±8.6 Mm−1. Both the scattering and backscattering coefficients had a clear seasonal cycle with an autumn minimum and a 4–5 times higher summer maximum. The scattering was dominated by submicron aerosols and especially so during late summer and autumn. The Ångström exponent had a clear seasonal pattern with maximum values in late summer and minimum values during wintertime. The highest hemispheric backscattering fraction values were observed in autumn. To analyse the influence of air mass origin on the aerosol optical properties a trajectory climatology was applied to the Pallas aerosol data. The most polluted trajectory patterns represented air masses from the Kola Peninsula, Scandinavia and Russia as well as long-range transport from Britain and Eastern Europe. These air masses had the largest average scattering and backscattering coefficients for all seasons. Higher than average values of the Ångström exponent were also observed in connection with transport from these areas.


2014 ◽  
Vol 14 (10) ◽  
pp. 14351-14397 ◽  
Author(s):  
J. Li ◽  
B. E. Carlson ◽  
O. Dubovik ◽  
A. A. Lacis

Abstract. The Aerosol Robotic Network (AERONET) has been providing high-quality retrievals of aerosol optical properties from the surface at worldwide locations for more than a decade. Many sites have continuous and consistent records for more than 10 years, which enables the investigation of long-term trends of aerosol properties at these locations. In this study, we present trend analysis of AERONET data at 63 selected locations. In addition to commonly studied parameters such as Aerosol Optical Depth (AOD) and Ångström Exponent (AE), we also focus on Absorption Aerosol Optical Depth (ABS), Scattering Optical Depth (SCT), Single Scattering Albedo (SSA) and the Absorption Ångström Exponent (AAE). Two statistical methods are used to detect and estimate the trend: Mann–Kendall test associated with Sen's slope and linear least square fitting. Their results agree well in terms of the significance of the trend for the majority of the cases. The results indicate that Europe and North America experienced a uniform decrease in AOD and SCT, while significant (> 90%) increases of these two parameters are found for Kanpur, India. Most of European and North American sites also show negative trends for ABS, as well as three East Asian stations. The reduction in ABS results in positive SSA trends for these locations. The increase of SCT also leads to a positive SSA trend for Kanpur. Negative SSA trends are mostly found over South America, Australia and a few West European stations, which are mainly attributed to the increase of absorption. Fewer stations are found with significant trends for AE and AAE. In general, the trends do not exhibit obvious seasonality for the majority of the parameters and stations.


2020 ◽  
Author(s):  
Dominic Heslin-Rees ◽  
Maria Burgos ◽  
Hans-Christen Hansson ◽  
Radovan Krejci ◽  
Johan Ström ◽  
...  

Abstract. The study of long-term trends in aerosol optical properties is an important task to understand the underlying aerosol processes influencing the change of climate. The Arctic, as the place where climate change manifests most, is an especially sensitive region of the world. Within this work, we use a unique long-term data record of key aerosol optical properties from Zeppelin observatory, Svalbard, to ask the question of whether the environmental changes of the last two decades in the Arctic are reflected in the observations. We perform a trend analysis of the measured particle light scattering and backscattering coefficients and the derived scattering Ångström exponent and hemispheric backscattering fraction. In contrast to previous studies, the effect of in-cloud scavenging and potential sampling losses at the site is taken explicitly into account in the trend analysis. The analysis is combined with a back trajectory analysis and satellite-derived sea ice data, to support the interpretation of the observed trends. We find that the optical properties of aerosol particles have undergone clear and significant changes in the past two decades. The scattering Angström exponent and the particle light scattering coefficient exhibit statistically significant decreasing of between −4.9 and −6.3 % per year (using wavelengths of λ = 450 and 550 nm) and increasing trends of between 2.3 and 2.9 % per year (at a wavelength of λ = 550 nm), respectively. The magnitudes of the trends vary depending on the season. These trends indicate a shift to an aerosol dominated more by coarse-mode particles, most likely the result of increases in the relative amount of sea spray aerosol. We show that changes in air mass circulation patterns, specifically an increase in air masses from the south-west, are responsible for the shift in aerosol optical properties, while the decrease of Arctic sea ice in the last two decades had only a marginal influence on the observed trends.


Sign in / Sign up

Export Citation Format

Share Document