scholarly journals Advanced methods for uncertainty assessment and global sensitivity analysis of an Eulerian atmospheric chemistry transport model

2019 ◽  
Vol 19 (5) ◽  
pp. 2881-2898 ◽  
Author(s):  
Ksenia Aleksankina ◽  
Stefan Reis ◽  
Massimo Vieno ◽  
Mathew R. Heal

Abstract. Atmospheric chemistry transport models (ACTMs) are extensively used to provide scientific support for the development of policies to mitigate the detrimental effects of air pollution on human health and ecosystems. Therefore, it is essential to quantitatively assess the level of model uncertainty and to identify the model input parameters that contribute the most to the uncertainty. For complex process-based models, such as ACTMs, uncertainty and global sensitivity analyses are still challenging and are often limited by computational constraints due to the requirement of a large number of model runs. In this work, we demonstrate an emulator-based approach to uncertainty quantification and variance-based sensitivity analysis for the EMEP4UK model (regional application of the European Monitoring and Evaluation Programme Meteorological Synthesizing Centre-West). A separate Gaussian process emulator was used to estimate model predictions at unsampled points in the space of the uncertain model inputs for every modelled grid cell. The training points for the emulator were chosen using an optimised Latin hypercube sampling design. The uncertainties in surface concentrations of O3, NO2, and PM2.5 were propagated from the uncertainties in the anthropogenic emissions of NOx, SO2, NH3, VOC, and primary PM2.5 reported by the UK National Atmospheric Emissions Inventory. The results of the EMEP4UK uncertainty analysis for the annually averaged model predictions indicate that modelled surface concentrations of O3, NO2, and PM2.5 have the highest level of uncertainty in the grid cells comprising urban areas (up to ±7 %, ±9 %, and ±9 %, respectively). The uncertainty in the surface concentrations of O3 and NO2 were dominated by uncertainties in NOx emissions combined from non-dominant sectors (i.e. all sectors excluding energy production and road transport) and shipping emissions. Additionally, uncertainty in O3 was driven by uncertainty in VOC emissions combined from sectors excluding solvent use. Uncertainties in the modelled PM2.5 concentrations were mainly driven by uncertainties in primary PM2.5 emissions and NH3 emissions from the agricultural sector. Uncertainty and sensitivity analyses were also performed for five selected grid cells for monthly averaged model predictions to illustrate the seasonal change in the magnitude of uncertainty and change in the contribution of different model inputs to the overall uncertainty. Our study demonstrates the viability of a Gaussian process emulator-based approach for uncertainty and global sensitivity analyses, which can be applied to other ACTMs. Conducting these analyses helps to increase the confidence in model predictions. Additionally, the emulators created for these analyses can be used to predict the ACTM response for any other combination of perturbed input emissions within the ranges set for the original Latin hypercube sampling design without the need to rerun the ACTM, thus allowing for fast exploratory assessments at significantly reduced computational costs.

2018 ◽  
Author(s):  
Ksenia Aleksankina ◽  
Stefan Reis ◽  
Massimo Vieno ◽  
Mathew R. Heal

Abstract. Atmospheric chemistry transport models (ACTMs) are extensively used to provide scientific support for the development of policies to mitigate against the detrimental effects of air pollution on human health and ecosystems. Therefore, it is essential to quantitatively assess the level of model uncertainty and to identify the model input parameters that contribute the most to the uncertainty. For complex process-based models, such as ACTMs, uncertainty and global sensitivity analyses are still challenging and are often limited by computational constraints due to the requirement of a large number of model runs. In this work, we demonstrate an emulator-based approach to uncertainty quantification and variance-based sensitivity analysis for the EMEP4UK model (regional application of the European Monitoring and Evaluation Programme Meteorological Synthesizing Centre-West). A separate Gaussian process emulator was used to estimate model predictions at unsampled points in the space of the uncertain model inputs for every modelled grid cell. The training points for the emulator were chosen using an optimised Latin hypercube sampling design. The uncertainties in surface concentrations of O3, NO2, and PM2.5 were propagated from the uncertainties in the anthropogenic emissions of NOx, SO2, NH3, VOC, and primary PM2.5 reported by the UK National Atmospheric Emissions Inventory. The results of the EMEP4UK uncertainty analysis for the annually averaged model predictions indicate that modelled surface concentrations of O3, NO2, and PM2.5 have the highest level of uncertainty in the grid cells comprising urban areas (up to ±7 %, ±9 %, and ±9 % respectively). The uncertainty in the surface concentrations of O3 and NO2 were dominated by uncertainties in NOx emissions combined from non-dominant sectors (i.e. all sectors excluding energy production and road transport) and shipping emissions. Additionally, uncertainty in OO3 was driven by uncertainty VOC emissions combined from sectors excluding solvent use. Uncertainties in the modelled PM2.5 concentrations were mainly driven by uncertainties in primary PM2.5 emissions and NH3 emissions from the agricultural sector. Uncertainty and sensitivity analyses were also performed for five selected grid sells for monthly averaged model predictions to illustrate the seasonal change in the magnitude of uncertainty and change in the contribution of different model inputs to the overall uncertainty. Our study demonstrates the viability of a Gaussian process emulator-based approach for uncertainty and global sensitivity analyses, which can be applied to other ACTMs. Conducting these analyses helps to increase the confidence in model predictions. Additionally, the emulators created for these analyses can be used to predict the ACTM response for any other combination of perturbed input emissions within the ranges set for the original Latin hypercube sampling design without the need to re-run the ACTM, thus allowing fast exploratory assessments at significantly reduced computational costs.


2020 ◽  
Vol 34 (11) ◽  
pp. 1813-1830
Author(s):  
Daniel Erdal ◽  
Sinan Xiao ◽  
Wolfgang Nowak ◽  
Olaf A. Cirpka

Abstract Ensemble-based uncertainty quantification and global sensitivity analysis of environmental models requires generating large ensembles of parameter-sets. This can already be difficult when analyzing moderately complex models based on partial differential equations because many parameter combinations cause an implausible model behavior even though the individual parameters are within plausible ranges. In this work, we apply Gaussian Process Emulators (GPE) as surrogate models in a sampling scheme. In an active-training phase of the surrogate model, we target the behavioral boundary of the parameter space before sampling this behavioral part of the parameter space more evenly by passive sampling. Active learning increases the subsequent sampling efficiency, but its additional costs pay off only for a sufficiently large sample size. We exemplify our idea with a catchment-scale subsurface flow model with uncertain material properties, boundary conditions, and geometric descriptors of the geological structure. We then perform a global-sensitivity analysis of the resulting behavioral dataset using the active-subspace method, which requires approximating the local sensitivities of the target quantity with respect to all parameters at all sampled locations in parameter space. The Gaussian Process Emulator implicitly provides an analytical expression for this gradient, thus improving the accuracy of the active-subspace construction. When applying the GPE-based preselection, 70–90% of the samples were confirmed to be behavioral by running the full model, whereas only 0.5% of the samples were behavioral in standard Monte-Carlo sampling without preselection. The GPE method also provided local sensitivities at minimal additional costs.


2017 ◽  
Author(s):  
Christopher J. Skinner ◽  
Tom J. Coulthard ◽  
Wolfgang Schwanghart ◽  
Marco J. Van De Wiel ◽  
Greg Hancock

Abstract. Landscape Evolution Models have a long history of use as exploratory models, providing greater understanding of the role large scale processes have on the long-term development of the Earth’s surface. As computational power has advanced so has the development and sophistication of these models. This has seen them applied at increasingly smaller scale and shorter-term simulations at greater detail. However, this has not gone hand-in-hand with more rigorous verifications that are commonplace in the applications of other types of environmental models- for example Sensitivity Analyses. This can be attributed to a paucity of data and methods available in order to calibrate, validate and verify the models, and also to the extra complexity Landscape Evolution Models represent – without these it is not possible to produce a reliable Objective Function against which model performance can be judged. To overcome this deficiency, we present a set of Model Functions – each representing an aspect of model behaviour – and use these to assess the relative sensitivity of a Landscape Evolution Model (CAESAR-Lisflood) to a large set of parameters via a global Sensitivity Analysis using the Morris Method. This novel combination of behavioural Model Functions and the Morris Method provides insight into which parameters are the greatest source of uncertainty in the model, and which have the greatest influence over different model behaviours. The method was repeated over two different catchments, showing that across both catchments and across most model behaviours the choice of Sediment Transport formula was the dominate source of uncertainty in the CAESAR-Lisflood model, although there were some differences between the two catchments. Crucially, different parameters influenced the model behaviours in different ways, with Model Functions related to internal geomorphic changes responding in different ways to those related to sediment yields from the catchment outlet. This method of behavioural sensitivity analysis provides a useful method of assessing the performance of Landscape Evolution Models in the absence of data and methods for an Objective Function approach.


2009 ◽  
Vol 11 (3-4) ◽  
pp. 282-296 ◽  
Author(s):  
Srikanta Mishra

Formal uncertainty and sensitivity analysis techniques enable hydrologic modelers to quantify the range of likely outcomes, likelihood of each outcome and an assessment of key contributors to output uncertainty. Such information is an improvement over standard deterministic point estimates for making engineering decisions under uncertainty. This paper provides an overview of various uncertainty analysis techniques that permit mapping model input uncertainty into uncertainty in model predictions. These include Monte Carlo simulation, first-order second-moment analysis, point estimate method, logic tree analysis and first-order reliability method. Also presented is an overview of sensitivity analysis techniques that permit identification of those parameters that control the uncertainty in model predictions. These include stepwise regression, mutual information (entropy) analysis and classification tree analysis. Two case studies are presented to demonstrate the practical applicability of these techniques. The paper also discusses a systematic framework for carrying out uncertainty and sensitivity analyses.


PLoS ONE ◽  
2015 ◽  
Vol 10 (6) ◽  
pp. e0130252 ◽  
Author(s):  
Eugene T Y Chang ◽  
Mark Strong ◽  
Richard H Clayton

Energies ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4884
Author(s):  
Piotr Darnowski ◽  
Piotr Mazgaj ◽  
Mateusz Włostowski

In this study, uncertainty and sensitivity analyses were performed with MELCOR 2.2.18 to study the hydrogen generation (figure-of-merit (FoM)) during the in-vessel phase of a severe accident in a light water reactor. The focus of this work was laid on a large generation-III pressurized water reactor (PWR) and a double-ended hot leg (HL) large break loss of coolant accident (LB-LOCA) without a safety injection (SI). The FPT-1 Phebus integral experiment emulating LOCA was studied, where the experiment outcomes were applied for the plant scale modelling. The best estimate calculations were supplemented with an uncertainty analysis (UA) based on 400 input-decks and Latin hypercube sampling (LHS). Additionally, the sensitivity analysis (SA) utilizing the linear regression and linear and rank correlation coefficients was performed. The study was prepared with a new open-source MELCOR sensitivity and uncertainty tool (MelSUA), which was supplemented with this work. The FPT-1 best-estimate model results were within the 10% experimental uncertainty band for the final FoM. It was shown that the hydrogen generation uncertainties in PWR were similar to the FPT-1, with the 95% percentile being covered inside a ~50% band and the 50% percentile inside a ~25% band around the FoM median. Two different power profiles for PWR were compared, indicating its impact on the uncertainty but also on the sensitivity results. Despite a similar setup, different uncertainty parameters impacted FoM, showing the difference between scales but also a significant impact of boundary conditions on the sensitivity analysis.


Sign in / Sign up

Export Citation Format

Share Document