scholarly journals Local and regional contributions to fine particulate matter in the 18 cities of Sichuan Basin, southwestern China

2019 ◽  
Vol 19 (9) ◽  
pp. 5791-5803 ◽  
Author(s):  
Xue Qiao ◽  
Hao Guo ◽  
Ya Tang ◽  
Pengfei Wang ◽  
Wenye Deng ◽  
...  

Abstract. The Sichuan Basin (SCB) is one of the regions suffering from severe air pollution in China, but fewer studies have been conducted for this region than for the more developed regions in eastern and northern China. In this study, a source-oriented version of the Community Multiscale Air Quality (CMAQ) model was used to quantify contributions from nine regions to PM2.5 (i.e., particulate matter, PM, with an aerodynamic diameter less than 2.5 µm) and its components in the 18 cities within the SCB in the winter (December  2014 to February 2015) and summer (June to August 2015). In the winter, citywide average PM2.5 concentrations are 45–126 µg m−3, with 21 %–51 % and 39 %–66 % being due to local and nonlocal emissions, respectively. In the summer, 15 %–45 % and 25 %–52 % of citywide average PM2.5 (14–31 µg m−3) are due to local and nonlocal emissions, respectively. Compared to primary PM (PPM), the inter-region transport of secondary inorganic aerosols (SIA), including ammonia, nitrate, and sulfate ions (NH4+, NO3-, and SO42-, respectively), and their gas-phase precursors are greater. The region to the east of SCB (R7, including central and eastern China and others) is the largest contributor outside the SCB, and it can contribute approximately 80 % of PM2.5 in the eastern, northeastern, and southeastern rims of the SCB but only 10 % in other SCB regions in both seasons. Under favorable transport conditions, regional transport of air pollutants from R7 could account for up to 35–100 µg m−3 of PM2.5 in each of the SCB cities in the winter. This study demonstrates that it is important to have joint emission control efforts among cities within the SCB and regions to the east in order to reduce PM2.5 concentrations and prevent high PM2.5 days for the entire basin.

2019 ◽  
Author(s):  
Xue Qiao ◽  
Hao Guo ◽  
Ya Tang ◽  
Pengfei Wang ◽  
Wenye Deng ◽  
...  

Abstract. The Sichuan Basin (SCB) is one of the regions suffering from severe air pollution in China, but fewer studies have been conducted for this region than the more developed regions in North and East China. In this study, a source-oriented version of the Community Multi-scale Air Quality (CMAQ) model was used to quantify contributions from nine regions to PM2.5 (i.e., particulate matter (PM) with an aerodynamic diameter less than 2.5 μm) and its components in the 18 cities within the SCB in the winter (December 2014 to February 2015) and summer (June to August, 2015). In the winter, citywide average PM2.5 concentrations are 45~126 μg m−3, with 21~51 % and 39~66 % due to local and non-local emissions, respectively. In the summer, 15~45 % and 25~52 % of citywide average PM2.5 (14~31 μg m−3) are due to local and non-local emissions, respectively. Compared to primary PM (PPM), the inter-region transport of secondary inorganic aerosols (SIA, including ammonia (NH4+), nitrate (NO3−), and sulfate (SO42−)) is greater. The region to the east of SCB (R7) is the largest contributor outside the SCB, and it can contribute approximately 80 % in the northeast, east, and southeast rims of the SCB, but only 10 % in the other regions in both seasons. Under favorable transport conditions, regional transport of air pollutants from R7 could account for up to 35~100 μg m−3 of PM2.5 in each of the SCB cities in the winter. This study demonstrates that it is important to have joint emission control efforts among cities within the SCB and neighbor regions to the east in order to reduce PM2.5 concentrations and prevent high PM2.5 days for the entire basin.


2021 ◽  
Vol 244 ◽  
pp. 117896
Author(s):  
Xue Qiao ◽  
Yanping Yuan ◽  
Ya Tang ◽  
Qi Ying ◽  
Hao Guo ◽  
...  

2021 ◽  
Author(s):  
Drew C. Pendergrass ◽  
Daniel J. Jacob ◽  
Shixian Zhai ◽  
Jhoon Kim ◽  
Ja-Ho Koo ◽  
...  

Abstract. We use 2011–2019 aerosol optical depth (AOD) observations from the Geostationary Ocean Color Imager (GOCI) instrument over East Asia to infer 24-h daily surface fine particulate matter (PM2.5) concentrations at continuous 6x6 km2 resolution over eastern China, South Korea, and Japan. This is done with a random forest (RF) algorithm applied to the gap-filled GOCI AODs and other data and trained with PM2.5 observations from the three national networks. The predicted 24-h PM2.5 concentrations for sites entirely withheld from training in a ten-fold crossvalidation procedure correlate highly with network observations (R2 = 0.89) with single-value precision of 26–32 % depending on country. Prediction of annual mean values has R2 = 0.96 and single-value precision of 12 %. The RF algorithm is only moderately successful for diagnosing local exceedances of the National Ambient Air Quality Standard (NAAQS) because these exceedances are typically within the single-value precisions of the RF, and also because of RF smoothing of extreme PM2.5 concentrations. The area-weighted and population-weighted trends of RF PM2.5 concentrations for eastern China, South Korea, and Japan show steady 2015–2019 declines consistent with surface networks, but the surface networks in eastern China and South Korea underestimate population exposure. Further examination of RF PM2.5 fields for South Korea identifies hotspots where surface network sites were initially lacking and shows 2015–2019 PM2.5 decreases across the country except for flat concentrations in the Seoul metropolitan area. Inspection of monthly PM2.5 time series in Beijing, Seoul, and Tokyo shows that the RF algorithm successfully captures observed seasonal variations of PM2.5 even though AOD and PM2.5 often have opposite seasonalities. Application of the RF algorithm to urban pollution episodes in Seoul and Beijing demonstrates high skill in reproducing the observed day-to-day variations in air quality as well as spatial patterns on the 6 km scale. Comparison to a CMAQ simulation for the Korean peninsula demonstrates the value of the continuous RF PM2.5 fields for testing air quality models, including over North Korea where they offer a unique resource.


2020 ◽  
Author(s):  
Amy Hrdina ◽  
Jennifer G. Murphy ◽  
Anna Gannet Hallar ◽  
John C. Lin ◽  
Alexander Moravek ◽  
...  

Abstract. Wintertime ammonium nitrate (NH4NO3) pollution events burden urban mountain basins around the globe. In the Salt Lake Valley of Utah in the United States, such pollution events are often driven by the formation of persistent cold air pools (PCAP) that trap emissions near the surface for several consecutive days. As a result, secondary pollutants including fine particulate matter less than 2.5 μm in diameter (PM2.5), largely in the form of NH4NO3, build up during these events and lead to severe haze. As part of an extensive measurement campaign to understand the chemical processes underlying PM2.5 formation, the 2017 Utah Winter Fine Particulate Study, water-soluble trace gases and PM2.5 constituents were continuously monitored using the Ambient Ion Monitoring Ion Chromatograph system (AIM-IC) at the University of Utah campus. Gas phase NH3, HNO3, HCl and SO2 along with particulate NH4+, Na+, K+, Mg2+, Ca2+, NO3−, Cl−, and SO42− were measured from January 21 to February 21, 2017. During the two PCAP events captured, the fine particulate matter was dominated by secondary NH4NO3. The comparison of total nitrate (HNO3 + PM2.5 NO3−) and total NHx (NH3 + PM2.5 NH4+) showed NHx was in excess during both pollution events. However, chemical composition analysis of the snowpack during the first PCAP event revealed that the total concentration of deposited NO3− was nearly three times greater than that of deposited NH4+. Daily snow composition measurements showed a strong correlation between NO3− and Ca2+ in the snowpack. The presence of non-volatile salts (Na+, Ca2+, and Mg2+), which are frequently associated with coarse mode dust, was also detected in PM2.5 by the AIM-IC during the two PCAP events, accounting for roughly 5 % of total mass loading. The presence of a significant particle mass and surface area in the coarse mode during the first PCAP event was indicated by size-resolved particle measurements from an Aerodynamic Particle Sizer. Taken together, these observations imply that atmospheric measurements of the gas phase and fine mode particle nitrate may not represent the total burden of nitrate in the atmosphere, implying a potentially significant role for uptake by coarse mode dust. Using the NO3− : NH4+ ratio observed in the snowpack to estimate the proportion of atmospheric nitrate present in the coarse mode, we estimate that the amount of secondary NH4NO3 could double in the absence of the coarse mode sink. The underestimation of total nitrate indicates an incomplete account of the total oxidant production during PCAP events. The ability of coarse particles to permanently remove HNO3 and influence PM2.5 formation is discussed using information about particle composition and size distribution.


2021 ◽  
Vol 21 (10) ◽  
pp. 8111-8126
Author(s):  
Amy Hrdina ◽  
Jennifer G. Murphy ◽  
Anna Gannet Hallar ◽  
John C. Lin ◽  
Alexander Moravek ◽  
...  

Abstract. Wintertime ammonium nitrate (NH4NO3) pollution events burden urban mountain basins around the globe. In the Salt Lake Valley of Utah in the United States, such pollution events are often driven by the formation of persistent cold-air pools (PCAPs) that trap emissions near the surface for several consecutive days. As a result, secondary pollutants including fine particulate matter less than 2.5 µm in diameter (PM2.5), largely in the form of NH4NO3, build up during these events and lead to severe haze. As part of an extensive measurement campaign to understand the chemical processes underlying PM2.5 formation, the 2017 Utah Winter Fine Particulate Study, water-soluble trace gases and PM2.5 constituents were continuously monitored using the ambient ion monitoring ion chromatograph (AIM-IC) system at the University of Utah campus. Gas-phase NH3, HNO3, HCl, and SO2 along with particulate NH4+, Na+, K+, Mg2+, Ca2+, NO3-, Cl−, and SO42- were measured from 21 January to 21 February 2017. During the two PCAP events captured, the fine particulate matter was dominated by secondary NH4NO3. The comparison of total nitrate (HNO3 + PM2.5 NO3-) and total NHx (NH3 + PM2.5 NH4+) showed NHx was in excess during both pollution events. However, chemical composition analysis of the snowpack during the first PCAP event revealed that the total concentration of deposited NO3- was nearly 3 times greater than that of deposited NH4+. Daily snow composition measurements showed a strong correlation between NO3- and Ca2+ in the snowpack. The presence of non-volatile salts (Na+, Ca2+, and Mg2+), which are frequently associated with coarse-mode dust, was also detected in PM2.5 by the AIM-IC during the two PCAP events, accounting for roughly 5 % of total mass loading. The presence of a significant particle mass and surface area in the coarse mode during the first PCAP event was indicated by size-resolved particle measurements from an aerodynamic particle sizer. Taken together, these observations imply that atmospheric measurements of the gas-phase and fine-mode particle nitrate may not represent the total burden of nitrate in the atmosphere, implying a potentially significant role for uptake by coarse-mode dust. Using the NO3- : NH4+ ratio observed in the snowpack to estimate the proportion of atmospheric nitrate present in the coarse mode, we estimate that the amount of secondary NH4NO3 could double in the absence of the coarse-mode sink. The underestimation of total nitrate indicates an incomplete account of the total oxidant production during PCAP events. The ability of coarse particles to permanently remove HNO3 and influence PM2.5 formation is discussed using information about particle composition and size distribution.


Sign in / Sign up

Export Citation Format

Share Document