scholarly journals Effects of 3D electric field on saltation during dust storms: an observational and numerical study

2020 ◽  
Vol 20 (23) ◽  
pp. 14801-14820
Author(s):  
Huan Zhang ◽  
You-He Zhou

Abstract. Particle triboelectric charging, being ubiquitous in nature and industry, potentially plays a key role in dust events, including the lifting and transport of sand and dust particles. However, the properties of the electric field (E field) and its influences on saltation during dust storms remain obscure as the high complexity of dust storms and the existing numerical studies are mainly limited to the 1D E field. Here, we quantify the effects of the real 3D E field on saltation during dust storms through a combination of field observations and numerical modelling. The 3D E fields in the sub-metre layer from 0.05 to 0.7 m above the ground during a dust storm are measured at the Qingtu Lake Observation Array site. The time-varying means of the E field series over a certain timescale are extracted by the discrete wavelet transform and ensemble empirical mode decomposition methods. The measured results show that each component of the 3D E field data roughly collapses on a single third-order polynomial curve when normalized. Such 3D E field data within a few centimetres of the ground have never been reported and formulated before. Using the discrete element method, we then develop a comprehensive saltation model in which the triboelectric charging between particle–particle midair collisions is explicitly accounted for, allowing us to evaluate the triboelectric charging in saltation during dust storms properly. By combining the results of measurements and modelling, we find that, although the vertical component of the E field (i.e. 1D E field) inhibits sand transport, the 3D E field enhances sand transport substantially. Furthermore, the model predicts that the 3D E field enhances the total mass flux and saltation height by up to 20 % and 15 %, respectively. This suggests that a 3D E field consideration is necessary if one is to explain precisely how the E field affects saltation during dust storms. These results further improve our understanding of particle triboelectric charging in saltation and help to provide more accurate characterizations of sand and dust transport during dust storms.

2019 ◽  
Author(s):  
Huan Zhang ◽  
You-He Zhou

Abstract. Particle tribo-electrification being ubiquitous in nature and industry, potentially plays a key role in dust events, including the lifting and transport of sand and dust particles. However, the properties of electric field (E-field) and its influences on saltation during dust storms remain obscure as the high complexity of dust storms and the existing numerical studies mainly limited to one-dimensional (1-D) E-field. Here, we quantify the effects of real three-dimensional (3-D) E-field on saltation, through a combination of field observations and numerical modelling. The 3-D E-fields in the sub-meter layer from 0.05 to 0.7 m above the ground during a dust storm are measured at Qingtu Lake Observation Array site. The measured results show that each component of the 3-D E-field data nearly collapses on a single 3-order polynomial curve when normalized. Interestingly, the vertical component of the 3-D E-field increases with increasing height in the saltation layer during dust storms. Such 3-D E-field data close to the ground within a few centimeters has never been reported and formulated before. Using the discrete element method, we then develop a comprehensive saltation model, in which the tribo-electrification between particle-particle midair collisions is explicitly accounted for, allowing us to evaluate the tribo-electrification in saltation properly. By combining the results of measurements and modelling, we find that although the vertical component of the E-field (i.e. 1-D E-field) inhibits sand transport, 3-D E-field enhances sand transport substantially. Furthermore, the model predicts that 3-D E-field enhances the total mass flux by up to 63 %. This suggests that a truly 3-D E-field consideration is necessary if one is to explain precisely how the E-field affects saltation during dust storms. These results will further improve our understanding of particle tribo-electrification in saltation and help to provide more accurate characterizations of sand and dust transport during dust storms.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Huan Zhang ◽  
You-He Zhou

Abstract While the electrification of dust storms is known to substantially affect the lifting and transport of dust particles, the electrical structure of dust storms and its underlying charge separation mechanisms are largely unclear. Here we present an inversion method, which is based on the Tikhonov regularization for inverting the electric field data collected in a near-ground observation array, to reconstruct the space-charge density and electric field in dust storms. After verifying the stability, robustness, and accuracy of the inversion procedure, we find that the reconstructed space-charge density exhibits a universal three-dimensional mosaic pattern of oppositely charged regions, probably due to the charge separation by turbulence. Furthermore, there are significant linear relationships between the reconstructed space-charge densities and measured PM10 dust concentrations at each measurement point, suggesting a multi-point large-scale charge equilibrium phenomenon in dust storms. These findings refine our understanding of charge separation mechanisms and particle transport in dust storms.


2020 ◽  
Author(s):  
Itzhak Katra ◽  
Yoav Yair

<p>The electrification of mineral sand/dust particles during aeolian processes is a well-documented phenomenon both in natural settings and in laboratory experiments. When in motion, small airborne dust particles collide with other suspended particles or impact the surface through the kinetic energy they acquire from the ambient wind. Field experiments will be conducted in conjunction with the AMEDEE-2020 Analog Mars Mission, planned for November 2020 in the Ramon Crater in southern Israel and led by the Austrian Space Forum. During SANDEE, we will deploy a portable wind-tunnel (Katra et al., 2016) at the site, and record particle movements in conditions that simulate sand storms of varying speeds. We will use local Negev desert, as well as Mars-simulant, soil samples that will be placed inside the wind-tunnel. We will measure particles' dynamic, mineralogical and electrical characteristics as they are blown by wind inside the tunnel.  A JCI 114 portable electric field detector will be used to to measure the amplification of the ambient electric field during sand movement. A vertical array of traps oriented along the wind direction will be used for sampling particles, in order to calculate the related sand fluxes and to analyze particle characteristics. The experiment will be repeated at night under dark conditions, in order to observe if light is emitted from electrified dust, due to corona discharges.</p><p>We expect that SANDEE will help decipher wind-speed/aerosol/electrical charge relationships. These have practical implications for future Mars landers, because airborne sand particles are likely to interfere with communications and also to impede the energy output of solar panels due to the electrical adhesion of charged aerosol.</p>


2019 ◽  
Vol 187 ◽  
pp. 114-128
Author(s):  
Matheus F. Grings ◽  
Rejane de C. Oliveski ◽  
Ligia D.F. Marczak

2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
José Alvim Berkenbrock ◽  
Rafaela Grecco Machado ◽  
Daniela Ota Hisayasu Suzuki

Electrochemotherapy is an anticancer treatment based on applying electric field pulses that reduce cell membrane selectivity, allowing chemotherapy drugs to enter the cells. In parallel to electrochemotherapy clinical tests, in silico experiments have helped scientists and clinicians to understand the electric field distribution through anatomically complex regions of the body. In particular, these in silico experiments allow clinicians to predict problems that may arise in treatment effectiveness. The current work presents a metastatic case of a mast cell tumor in a dog. In this specific treatment planning study, we show that using needle electrodes has a possible pitfall. The macroscopic consequence of the electroporation was assessed through a mathematical model of tissue electrical conductivity. Considering the electrical and geometrical characteristics of the case under study, we modeled an ellipsoidal tumor. Initial simulations were based on the European Standard Operating Procedures for electrochemotherapy suggestions, and then different electrodes’ arrangements were evaluated. To avoid blind spots, multiple applications are usually required for large tumors, demanding electrode repositioning. An effective treatment electroporates all the tumor cells. Partially and slightly overlapping the areas increases the session’s duration but also likely increases the treatment’s effectiveness. It is worth noting that for a single application, the needles should not be placed close to the tumor’s borders because effectiveness is highly likely to be lost.


2017 ◽  
Vol 66 (1) ◽  
pp. 207-225 ◽  
Author(s):  
Dikun Yang ◽  
Douglas W. Oldenburg

Sign in / Sign up

Export Citation Format

Share Document