The SANDEE campaign: Electrical effects during sand transport by aeolian processes in the Negev desert and implications for Mars

Author(s):  
Itzhak Katra ◽  
Yoav Yair

<p>The electrification of mineral sand/dust particles during aeolian processes is a well-documented phenomenon both in natural settings and in laboratory experiments. When in motion, small airborne dust particles collide with other suspended particles or impact the surface through the kinetic energy they acquire from the ambient wind. Field experiments will be conducted in conjunction with the AMEDEE-2020 Analog Mars Mission, planned for November 2020 in the Ramon Crater in southern Israel and led by the Austrian Space Forum. During SANDEE, we will deploy a portable wind-tunnel (Katra et al., 2016) at the site, and record particle movements in conditions that simulate sand storms of varying speeds. We will use local Negev desert, as well as Mars-simulant, soil samples that will be placed inside the wind-tunnel. We will measure particles' dynamic, mineralogical and electrical characteristics as they are blown by wind inside the tunnel.  A JCI 114 portable electric field detector will be used to to measure the amplification of the ambient electric field during sand movement. A vertical array of traps oriented along the wind direction will be used for sampling particles, in order to calculate the related sand fluxes and to analyze particle characteristics. The experiment will be repeated at night under dark conditions, in order to observe if light is emitted from electrified dust, due to corona discharges.</p><p>We expect that SANDEE will help decipher wind-speed/aerosol/electrical charge relationships. These have practical implications for future Mars landers, because airborne sand particles are likely to interfere with communications and also to impede the energy output of solar panels due to the electrical adhesion of charged aerosol.</p>


2019 ◽  
Author(s):  
Huan Zhang ◽  
You-He Zhou

Abstract. Particle tribo-electrification being ubiquitous in nature and industry, potentially plays a key role in dust events, including the lifting and transport of sand and dust particles. However, the properties of electric field (E-field) and its influences on saltation during dust storms remain obscure as the high complexity of dust storms and the existing numerical studies mainly limited to one-dimensional (1-D) E-field. Here, we quantify the effects of real three-dimensional (3-D) E-field on saltation, through a combination of field observations and numerical modelling. The 3-D E-fields in the sub-meter layer from 0.05 to 0.7 m above the ground during a dust storm are measured at Qingtu Lake Observation Array site. The measured results show that each component of the 3-D E-field data nearly collapses on a single 3-order polynomial curve when normalized. Interestingly, the vertical component of the 3-D E-field increases with increasing height in the saltation layer during dust storms. Such 3-D E-field data close to the ground within a few centimeters has never been reported and formulated before. Using the discrete element method, we then develop a comprehensive saltation model, in which the tribo-electrification between particle-particle midair collisions is explicitly accounted for, allowing us to evaluate the tribo-electrification in saltation properly. By combining the results of measurements and modelling, we find that although the vertical component of the E-field (i.e. 1-D E-field) inhibits sand transport, 3-D E-field enhances sand transport substantially. Furthermore, the model predicts that 3-D E-field enhances the total mass flux by up to 63 %. This suggests that a truly 3-D E-field consideration is necessary if one is to explain precisely how the E-field affects saltation during dust storms. These results will further improve our understanding of particle tribo-electrification in saltation and help to provide more accurate characterizations of sand and dust transport during dust storms.



2020 ◽  
Vol 20 (23) ◽  
pp. 14801-14820
Author(s):  
Huan Zhang ◽  
You-He Zhou

Abstract. Particle triboelectric charging, being ubiquitous in nature and industry, potentially plays a key role in dust events, including the lifting and transport of sand and dust particles. However, the properties of the electric field (E field) and its influences on saltation during dust storms remain obscure as the high complexity of dust storms and the existing numerical studies are mainly limited to the 1D E field. Here, we quantify the effects of the real 3D E field on saltation during dust storms through a combination of field observations and numerical modelling. The 3D E fields in the sub-metre layer from 0.05 to 0.7 m above the ground during a dust storm are measured at the Qingtu Lake Observation Array site. The time-varying means of the E field series over a certain timescale are extracted by the discrete wavelet transform and ensemble empirical mode decomposition methods. The measured results show that each component of the 3D E field data roughly collapses on a single third-order polynomial curve when normalized. Such 3D E field data within a few centimetres of the ground have never been reported and formulated before. Using the discrete element method, we then develop a comprehensive saltation model in which the triboelectric charging between particle–particle midair collisions is explicitly accounted for, allowing us to evaluate the triboelectric charging in saltation during dust storms properly. By combining the results of measurements and modelling, we find that, although the vertical component of the E field (i.e. 1D E field) inhibits sand transport, the 3D E field enhances sand transport substantially. Furthermore, the model predicts that the 3D E field enhances the total mass flux and saltation height by up to 20 % and 15 %, respectively. This suggests that a 3D E field consideration is necessary if one is to explain precisely how the E field affects saltation during dust storms. These results further improve our understanding of particle triboelectric charging in saltation and help to provide more accurate characterizations of sand and dust transport during dust storms.



Geosciences ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 389 ◽  
Author(s):  
Sherman ◽  
Zhang ◽  
Martin ◽  
Ellis ◽  
Kok ◽  
...  

Wind-formed ripples are distinctive features of many sandy aeolian environments, and their development and migration are basic responses to sand transport via saltation. Using data from the literature and from original field experiments, we presented empirical models linking dimensionless migration rates, urgd (ur is the ripple migration speed, g is the gravity acceleration, and d is the grain diameter) with dimensionless shear velocity, u*/u*t (u* is shear velocity and u*t is fluid threshold shear velocity). Data from previous studies provided 34 usable cases from four wind tunnel experiments and 93 cases from two field experiments. Original data comprising 68 cases were obtained from sites in Ceará, Brazil (26) and California, USA (42), using combinations of sonic anemometry, sand traps, photogrammetry, and laser distance sensors and particle counters. The results supported earlier findings of distinctively different relationships between urgd and u*/u*t for wind tunnel and field data. With our data, we could also estimate the contribution of creep transport associated with ripple migration to total transport rates. We calculated ripple-creep transport for 1 ≤ u*/u*t ≤ 2.5 and found that this accounted for about 3.6% (standard deviation = 2.3%) of total transport.



2001 ◽  
Vol 25 (1) ◽  
pp. 53-79 ◽  
Author(s):  
Giles F.S. Wiggs

This article reviews the advances made and problems encountered in the measurement, modelling and understanding of desert dune dynamics and processes in the last two decades. The main findings of three methods of investigation are reviewed: field studies, wind tunnel studies and mathematical modelling. Whilst major advances in field techniques have allowed an appreciation of the aerodynamic nature of sand dunes, particular problems with field research are evident in the measurement of aeolian processes on dune surfaces. Specifically, it is shown that attempts to ascertain shear stresses on dune windward slopes in the field and relate changes in stress to sand transport rate and erosion/deposition measurements have generally failed. These difficulties have arisen because the non-log-linear nature of wind velocity profiles on dune surfaces as a result of windflow acceleration has made the calculation of surface shear stresses unviable. Significant advances have been achieved in wind tunnel modelling where high-frequency hot-wire anemometer measurements have enabled shear stress and turbulence characteristics to be determined, although problems have been encountered in choosing appropriate scaling parameters. Empirical field and wind tunnel data have allowed the calibration of mathematical models which are now at a stage where the flow field around dunes can be calculated. It is considered, however, that the emerging technique of modelling using complex systems theory may hold the key to constructing a reliable framework for future investigations. New complex systems models have emphasized the need to return to a larger-scale perspective where dunes are not considered as individual elements, but as an integral part of a dunefield where aeolian processes at the dune scale are not thought to be significant.





2021 ◽  
Vol 13 (6) ◽  
pp. 1099
Author(s):  
Tianhe Wang ◽  
Ying Han ◽  
Wenli Hua ◽  
Jingyi Tang ◽  
Jianping Huang ◽  
...  

The satellite-based estimation of the dust mass concentration (DMC) is essential for accurately evaluating the global biogeochemical cycle of the dust aerosols. As for the uncertainties in estimating DMC caused by mixing dust and pollutants and assuming a fixed value for the mass extinction efficiency (MEE), a classic lidar-photometer method is employed to identify and separate the dust from pollutants, obtain the dust MEE, and evaluate the effect of the above uncertainties, during five dust field experiments in Northwest China. Our results show that this method is effective for continental aerosol mixtures consisting of dust and pollutants. It is also seen that the dust loading mainly occurred in the free troposphere (< 6 km), with the average mass loading of 905 ± 635 µg m−2 trapped in the planetary boundary layer. The dust MEE ranges from 0.30 to 0.60 m2 g−1 and has a significantly negative relationship with the size of dust particles. With the assumption of the dust MEE of 0.37 (0.60) m2 g−1, the DMC is shown to be overestimated (underestimated) by 20–40% (15–30%). In other words, our results suggest that the change of MEE with the size of dust particles should be considered in the estimation of DMC.



1988 ◽  
Vol 1 (21) ◽  
pp. 88 ◽  
Author(s):  
Nicholas C. Kraus ◽  
Kathryn J. Gingerich ◽  
Julie Dean Rosati

This paper presents results of two field experiments performed using portable traps to obtain point measurements of the longshore sand transport rate in the surf zone. The magnitude of the transport rate per unit width of surf zone is found to depend on the product of the local wave height and mean longshore current speed, but correlation is much improved by including two correction terms, one accounting for local wave energy dissipation and the other for the fluctuation in the longshore current. The field transport rates are also found to be compatible with laboratory rates obtained under combined unidirectional and oscillatory flow. Total transport rates previously reported for this experiment program are revised with recently determined sand trapping efficiencies.



Author(s):  
Zhengwei Ge ◽  
Chun Yang

Microfluidic concentration of sample species is achieved using the temperature gradient focusing (TGF) in a microchannel with a step change in the cross-section under a pure direct current (DC) field or a combined alternating current (AC) and DC electric field. Experiments were carried out to study the effects of applied voltage, buffer concentration and channel size on sample concentration in the TGF processes. These effects were analyzed and summarized using a dimensionless Joule number that is introduced in this study. In addition, Joule number effect in the Poly-dimethylsiloxane (PDMS)/PDMS microdevice was compared with the PDMS/Glass microdevice. A more than 450-fold concentration enhancement was obtained within 75 seconds in the PDMS/PDMS microdevice. Results also showed that the high frequency AC electric field which contributes to produce the temperature gradient and reduces the required DC voltage for the sample concentration. The lower DC voltage has generated slower electroosmotic flow (EOF), which reduces the backpressure effect associated with the finite reservoir size. Finally, a more than 2500-fold concentration enhancement was obtained within 14 minutes in the PDMS/PDMS microdevice, which was a great achievement in this TGF technique using inherent Joule heating effects.



Author(s):  
H Mastwijk ◽  
K Gulfo-van Beusekom ◽  
I Pol-Hofstad ◽  
H Schuten ◽  
M Boonman ◽  
...  


2019 ◽  
Author(s):  
Nirmalya Basu

There is a proposition that the possible occurrence of electrostatic discharges inside an oxygen regulator between charged insulating components, such as diaphragms, and earthed metal components, such as the valve stem, could be a potential candidate responsible for oxygen regulator fires. In this paper, the electric field which might be produced at the tip of the valve stem due to charge produced on the diaphragm of a typical oxygen regulator by deposition of charged dust particles or by their impact on the diaphragm or both has been evaluated. The diaphragm, in many cases, is backed partially by a concentric earthed metal disk. The diaphragm has been modelled as an insulating disk. The tip of the valve stem has been modelled as an earthed sphere which is very small compared to the insulating disk and the backing earthed metal disk. An analytical expression for the electric field produced at the point of the sphere nearest to the charged surface of the insulator has been derived. Our expression takes into account not only the effect of the charge on the insulating disk, but also that due to the presence of the backing earthed metal disk. Results for the magnitude of this electric field have been computed for the case of a sample oxygen regulator. An expression for the critical charge density on the surface of the insulating disk has been derived, and its value has been obtained for the case of our sample oxygen regulator. The electric field inside the non-metal diaphragm has also been evaluated. It appears from our analyses that there is a possibility that an electrostatic discharge might occur inside an oxygen regulator, and with an enriched-oxygen atmosphere being present there, such a discharge could also lead to a fire incident.



Sign in / Sign up

Export Citation Format

Share Document