scholarly journals Chemical Characteristics of Marine Fine Aerosols over Sea and at Offshore Islands during Three Cruise Sampling Campaigns in the Taiwan Strait– Sea Salts and Anthropogenic Particles

Author(s):  
Tsung-Chang Li ◽  
Chung-Shin Yuan ◽  
Chung-Hsuang Hung ◽  
Hsun-Yu Lin ◽  
Hu-Ching Huang ◽  
...  

Abstract. Marine fine aerosols were simultaneously collected over sea and at offshore islands during three cruise sampling campaigns to investigate the spatial distribution of atmospheric fine particles (PM2.5) and the influences of sea salts and anthropogenic particles on the chemical characteristics of PM2.5 in the Taiwan Strait. Field sampling results indicated that PM2.5 concentrations over sea were generally higher than those at the offshore islands, while the PM2.5 concentrations in the daytime were commonly higher than those at nighttime. Moreover, the concentrations of PM2.5 were generally higher than those of coarse particles (PM2.5–10) with an exception of the winter cruise in 2014. Moreover, sea salts accounted for 6.5–11.1 % and 11.0–13.5 % of PM2.5 at the offshore islands and over sea, respectively. The contributions of non-sea salt-water soluble ions (nss-WSI) to PM2.5 at the offshore islands were obviously higher than those over sea, while the contributions of ss-WSI for PM2.5 at the offshore islands were much lower than those over sea during the cruise sampling campaigns. Anthropogenic metallic elements including Zn, Mn, Pb, Cr, and Ni had higher concentrations over sea than those at the offshore islands, suggesting that PM2.5 was not only influenced by marine aerosols but also by anthropogenic particles originated from human activities such as industrial processing, fuel burning, and vehicular and shipping exhausts. Higher mass ratios of Ni/Al and Ni/Fe over sea than those at the offshore islands suggested that shipping emissions had higher influences on marine fine particles than crustal dusts in open sea while compared to those at the offshore islands. The carbonaceous contents of PM2.5 indicated that the concentrations of organic carbons (OC) were generally higher than those of elemental carbons (EC). The higher mass ratios of organic and elemental carbons (OC/EC) were observed at the central and north Taiwan Strait, and follow by the offshore islands and the south Taiwan Strait. Overall, sea salts and anthropogenic particles had significant influences on the chemical composition of PM2.5 over sea and at the offshore islands.

2010 ◽  
Vol 10 (7) ◽  
pp. 17467-17490
Author(s):  
G. Wang ◽  
K. Kawamura ◽  
M. Xie ◽  
S. Hu ◽  
B. Zhou ◽  
...  

Abstract. Primary (i.e., sugars and sugar alcohols) and secondary water-soluble organic compounds (WSOCs) (i.e., dicarboxylic acids and aromatic acids) were characterised on a molecular level in size-segregated aerosols from the urban and mountain atmosphere of China and from the marine atmosphere in the outflow region of East Asia. Levoglucosan is the most abundant WSOCs in the urban and mountain atmosphere, whose accumulated concentrations in all stages are 1–3 orders of magnitude higher than those of marine aerosols. In contrast, malic, succinic and phthalic acids are dominant in the marine aerosols, which are 3–6 times more abundant than levoglucosan. This suggests that a continuous formation of secondary organic aerosols is occurring in the marine atmosphere during the long-range transport of air mass from inland China to the North Pacific. Sugars and sugar-alcohols, except for levoglucosan, gave a bimodal size distribution in the urban and mountain areas, peaking at 0.7–1.1 μm and >3.3 μm, and a unimodal distribution in the marine region, peaking at >3.3 μm. In contrast, levoglucosan and all the secondary WSOCs, except for benzoic and azelaic acids, showed a unimodal size distribution with a peak at 0.7–1.1 μm. Geometric mean diameters (GMDs) of the WSOCs in fine particles (<2.1 μm) at the urban site are larger in winter than in spring, due to an enhanced coagulation effect under the development of an inversion layer. However, GMDs of levoglucosan and most of the secondary WSOCs in the coarse mode are larger in the mountain and marine air and smaller in the urban air. This is most likely caused by an enhanced hygroscopic growth due to the high humidity of the mountain and marine atmosphere.


2022 ◽  
pp. 101312
Author(s):  
Nan Xu ◽  
Min Hu ◽  
Zirui Zhang ◽  
Xiao Li ◽  
Shuya Hu ◽  
...  

2015 ◽  
Vol 15 (6) ◽  
pp. 2277-2290 ◽  
Author(s):  
Tsung Chang Li ◽  
Chung Shin Yuan ◽  
Kuo Cheng Lo ◽  
Chung Hsuang Hung ◽  
Shui Ping Wu ◽  
...  

2017 ◽  
Vol 148 ◽  
pp. 152-166 ◽  
Author(s):  
Tsung-Chang Li ◽  
Chung-Shin Yuan ◽  
Hu-Ching Huang ◽  
Chon-Lin Lee ◽  
Shui-Ping Wu ◽  
...  

2017 ◽  
Vol 43 (3) ◽  
pp. 289-298 ◽  
Author(s):  
Min Xu ◽  
Xianyan Wang ◽  
Xing Miao ◽  
Fuxing Wu ◽  
Mu Ma ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document