scholarly journals Size-resolved particulate water-soluble organic compounds in the urban, mountain and marine atmosphere

2010 ◽  
Vol 10 (7) ◽  
pp. 17467-17490
Author(s):  
G. Wang ◽  
K. Kawamura ◽  
M. Xie ◽  
S. Hu ◽  
B. Zhou ◽  
...  

Abstract. Primary (i.e., sugars and sugar alcohols) and secondary water-soluble organic compounds (WSOCs) (i.e., dicarboxylic acids and aromatic acids) were characterised on a molecular level in size-segregated aerosols from the urban and mountain atmosphere of China and from the marine atmosphere in the outflow region of East Asia. Levoglucosan is the most abundant WSOCs in the urban and mountain atmosphere, whose accumulated concentrations in all stages are 1–3 orders of magnitude higher than those of marine aerosols. In contrast, malic, succinic and phthalic acids are dominant in the marine aerosols, which are 3–6 times more abundant than levoglucosan. This suggests that a continuous formation of secondary organic aerosols is occurring in the marine atmosphere during the long-range transport of air mass from inland China to the North Pacific. Sugars and sugar-alcohols, except for levoglucosan, gave a bimodal size distribution in the urban and mountain areas, peaking at 0.7–1.1 μm and >3.3 μm, and a unimodal distribution in the marine region, peaking at >3.3 μm. In contrast, levoglucosan and all the secondary WSOCs, except for benzoic and azelaic acids, showed a unimodal size distribution with a peak at 0.7–1.1 μm. Geometric mean diameters (GMDs) of the WSOCs in fine particles (<2.1 μm) at the urban site are larger in winter than in spring, due to an enhanced coagulation effect under the development of an inversion layer. However, GMDs of levoglucosan and most of the secondary WSOCs in the coarse mode are larger in the mountain and marine air and smaller in the urban air. This is most likely caused by an enhanced hygroscopic growth due to the high humidity of the mountain and marine atmosphere.

2014 ◽  
Vol 7 (3) ◽  
pp. 2737-2781
Author(s):  
S. Saarikoski ◽  
S. Carbone ◽  
M. J. Cubison ◽  
R. Hillamo ◽  
P. Keronen ◽  
...  

Abstract. The performance of the miniature Versatile Aerosol Concentration Enrichment System (m-VACES, Geller et al., 2005) was investigated in laboratory and field studies using on-line instruments. Laboratory tests focused on the behavior of monodisperse ammonium sulfate (AS) or dioctyl sebacate (DOS) particles in the m-VACES measured with the Aerodynamic Particle Sizer (APS) and Scanning Mobility Particle Sizer (SMPS). The ambient measurements were conducted at an urban site in Helsinki, Finland, where the operation of the m-VACES was explored in conjunction with a Soot Particle Aerosol Mass Spectrometer (SP-AMS) in addition to the SMPS. In laboratory tests, the growth of particles in water vapor produced a stable droplet size distribution independent of the original particle size. However, when the droplets were dried with the goal of measuring the original size distribution, a shift to larger particles was observed for small particle sizes (up to ~ 200 nm in mobility diameter). That growth was probably caused by water-soluble organic compounds absorbed on the water droplets from the gas phase, but not evaporated in the drying phase. In ambient measurements, similar enrichment factors (EFs) were observed for nitrate, sulfate, organics and refractory black carbon. Size-dependent EFs showed a small shift in the accumulation mode peak size after the m-VACES. The presence of acidic ambient particles affected the enrichment of ammonium and chloride. Gaseous ammonia was observed to be absorbed on acidic particles in the m-VACES, neutralizing the aerosol. As a result the contribution of ammonium to particle mass increased from 6% for ambient to 9% for concentrated aerosol. The opposite trend was observed for chloride, since a fraction of chloride evaporated from acidic particles upon neutralization. Organic artifacts were quite small but a small positive artifact for hydrocarbons and nitrogen-containing organic compounds was observed. However, the oxidation state of organics remained nearly the same before and after the m-VACES. Ambient and concentrated OA was analyzed further with Positive Matrix Factorization (PMF). A three-factor solution was chosen for both of the data sets but the factors were slightly different for the ambient and concentrated OA. That could reflect the sensitivity of PMF to minor changes in OA composition; however, the data set used for the PMF analysis was limited in size and therefore had substantial uncertainty. Eight trace elements (Al, V, Fe, Zn, Rb, Sr, Zr and Cd) were detected with the SP-AMS of which three (Sr, Zr and Cd) were observed only with the m-VACES. Trace elements seemed to be enriched in the m-VACES similar to major inorganic and organic species. Overall, the operation of the m-VACES was not found to lead to any severe sampling artifacts. The effect of acidity could be an issue in locations where the aerosol is acidic, however, in those cases the use of a denuder (which was not used in this study) is recommended.


2014 ◽  
Vol 7 (7) ◽  
pp. 2121-2135 ◽  
Author(s):  
S. Saarikoski ◽  
S. Carbone ◽  
M. J. Cubison ◽  
R. Hillamo ◽  
P. Keronen ◽  
...  

Abstract. The performance of the miniature Versatile Aerosol Concentration Enrichment System (m-VACES; Geller et al., 2005) was investigated in laboratory and field studies using online instruments. Laboratory tests focused on the behavior of monodisperse ammonium sulfate (AS) or dioctyl sebacate (DOS) particles in the m-VACES measured with the aerodynamic particle sizer (APS) and scanning mobility particle sizer (SMPS). The ambient measurements were conducted at an urban site in Helsinki, Finland, where the operation of the m-VACES was explored in conjunction with a Soot Particle Aerosol Mass Spectrometer (SP-AMS) in addition to the SMPS. In laboratory tests, the growth of particles in water vapor produced a stable droplet size distribution independent of the original particle size. However, when the droplets were dried with the goal of measuring the original size distribution, a shift to larger particles was observed for small particle sizes (up to ~ 200 nm in mobility diameter). That growth was probably caused by water-soluble organic compounds absorbed on the water droplets from the gas phase, but not evaporated in the drying phase. In ambient measurements, a similar enrichment was observed for nitrate and sulfate in the m-VACES whereas the presence of acidic ambient particles affected the enrichment of ammonium. Gaseous ammonia was likely to be absorbed on acidic particles in the m-VACES, neutralizing the aerosol. For organics, the enrichment efficiency was comparable with sulfate and nitrate but a small positive artifact for hydrocarbons and nitrogen-containing organic compounds was noticed. Ambient and concentrated organic aerosol (OA) was analyzed further with positive matrix factorization (PMF). A three-factor solution was chosen for both of the data sets but the factors were slightly different for the ambient and concentrated OA, however, the data set used for the PMF analysis was limited in size (3 days) and therefore had substantial uncertainty. Overall, the operation of the m-VACES was not found to lead to any severe sampling artifacts. The effect of acidity could be an issue in locations where the aerosol is acidic, however, in those cases the use of a denuder (which was not used in this study) is recommended. Further ambient tests are needed for the characterization of the m-VACES as the time period for the ambient measurements was only 5 days in this study. Especially for OA additional tests are important as the chemical properties of organics can differ widely depending on time and location.


2014 ◽  
Vol 11 (7) ◽  
pp. 11361-11389 ◽  
Author(s):  
K. Violaki ◽  
J. Sciare ◽  
J. Williams ◽  
A. R. Baker ◽  
M. Martino ◽  
...  

Abstract. To obtain a comprehensive picture on the spatial distribution of water soluble organic nitrogen (WSON) in marine aerosols, samples were collected during research cruises in the tropical and south Atlantic Ocean and during a one year period (2005) over the southern Indian Ocean (Amsterdam island). Samples have been analyzed for both organic and inorganic forms of nitrogen and the factors controlling their levels have been examined. Fine mode WSON was found to play a significant role in the remote marine atmosphere with enhanced biogenic activity, with concentrations of WSON (11.3 ± 3.3 nmol N m–3) accounting for about 84% of the total dissolved nitrogen (TDN). Such levels are similar to those observed in the polluted marine atmosphere of the eastern Mediterranean (11.6 ± 14.0 nmol N m–3). Anthropogenic activities were found to be an important source of atmospheric WSON as evidenced by the ten times higher levels in the Northern Hemisphere (NH) than in the remote Southern Hemisphere (SH). Furthermore, the higher contribution of WSON to TDN (40%) in the SH, compared to the NH (20%), underlines the important role of organic nitrogen in remote marine areas. Finally, Sahara dust was also identified as a significant source of WSON in the coarse mode aerosols of the NH.


2021 ◽  
Author(s):  
Juanjuan Qin ◽  
Jihua Tan ◽  
Xueming Zhou ◽  
Yanrong Yang ◽  
Yuanyuan Qin ◽  
...  

Abstract. Water-soluble organic compounds (WSOC) are essential in atmospheric particle formation, migration, and transformation processes. Size-segregated atmospheric particles were collected in a rural area of Beijing. Excitation-emission matrix (EEM) fluorescence spectroscopy was used to investigate the sources and optical properties of WSOC. Sophisticated data analysis on EEM data was performed to characteristically estimate the underlying connections among aerosol particles in different sizes. The WSOC concentrations and average fluorescence intensity (AFI) showed monomodal distribution in winter and bimodal distribution in summer, with dominant mode between 0.26 to 0.44 µm for both seasons. The EEM spectra of size-segregated WSOC were different among variant particle sizes, which could be the results of changing sources and/or chemical transformation of organics. Size distributions of fluorescence regional intensity (region Ⅲ and Ⅴ) and HIX indicate that humification degree or aromaticity of WSOC was highest between 0.26 to 0.44 µm. The Stokes shift (SS) and the harmonic mean of the excitation and emission wavelengths (WH) reflected that π-conjugated systems were high between 0.26 to 0.44 µm as well. The parallel factor analysis (PARAFAC) results showed that humic-like substances were abundant in fine particles (< 1 µm) and peaked at 0.26–0.44 µm. All evidence supported that the humification degree of WSOC increased in submicron mode (< 0.44 µm) and decreased gradually. Thus, it was conjectured that condensation of organics still goes on in submicron mode, resulting in the highest humification degree exhibit in particle size between 0.26 to 0.44 µm rather than < 0.26 µm. Synthetically analyzing 3-dimensional fluorescence data could efficiently present the secondary transformation processes of WSOC.


Talanta ◽  
2018 ◽  
Vol 189 ◽  
pp. 31-38 ◽  
Author(s):  
Laura Blanco-Zubiaguirre ◽  
Asier Cabezas ◽  
Jose Antonio Carrero ◽  
Luis Ángel Fernández ◽  
Maitane Olivares ◽  
...  

Author(s):  
Xing Li ◽  
Shanshan Li ◽  
Qiulin Xiong ◽  
Xingchuan Yang ◽  
Mengxi Qi ◽  
...  

Beijing, which is the capital of China, suffers from severe Fine Particles (PM2.5) pollution during the heating season. In order to take measures to control the PM2.5 pollution and improve the atmospheric environmental quality, daily PM2.5 samples were collected at an urban site from 15 November to 31 December 2016, characteristics of PM2.5 chemical compositions and their effect on atmospheric visibility were analyzed. It was found that the daily average mass concentrations of PM2.5 ranged from 7.64 to 383.00 μg m−3, with an average concentration of 114.17 μg m−3. On average, the Organic Carbon (OC) and Elemental Carbon (EC) contributed 21.39% and 5.21% to PM2.5, respectively. Secondary inorganic ions (SNA: SO42− + NO3− + NH4+) dominated the Water-Soluble Inorganic Ions (WSIIs) and they accounted for 47.09% of PM2.5. The mass concentrations of NH4+, NO3− and SO42− during the highly polluted period were 8.08, 8.88 and 6.85 times greater, respectively, than during the clean period, which contributed most to the serious PM2.5 pollution through the secondary transformation of NO2, SO2 and NH3. During the highly polluted period, NH4NO3 contributed most to the reconstruction extinction coefficient (b′ext), accounting for 35.7%, followed by (NH4)2SO4 (34.44%) and Organic Matter (OM: 15.24%). The acidity of PM2.5 in Beijing was weakly acid. Acidity of PM2.5 and relatively high humidity could aggravate PM2.5 pollution and visibility impairment by promoting the generation of secondary aerosol. Local motor vehicles contributed the most to NO3−, OC, and visibility impairment in urban Beijing. Other sources of pollution in the area surrounding urban Beijing, including coal burning, agricultural sources, and industrial sources in the Hebei, Shandong, and Henan provinces, released large amounts of SO2, NH3, and NO2. These, which were transformed into SO42−, NH4+, and NO3− during the transmission process, respectively, and had a great impact on atmospheric visibility impairment.


2001 ◽  
Vol 32 ◽  
pp. 689-698 ◽  
Author(s):  
D. Temesi ◽  
A. Molnár ◽  
T. Feczkó ◽  
E. Mészáros

2009 ◽  
Vol 9 (6) ◽  
pp. 23955-23986 ◽  
Author(s):  
S. Guo ◽  
M. Hu ◽  
Z. B. Wang ◽  
J. Slanina ◽  
Y. L. Zhao

Abstract. To characterize aerosol pollution in Beijing, size-resolved aerosols were collected by MOUDIs during CAREBEIJING-2006 field campaign at Peking University (urban site) and Yufa (upwind rural site). Fine particle concentrations (PM1.8 by MOUDI) were 99.8±77.4 μg/m3 and 78.2±58.4 μg/m3, with PM1.8/PM10 ratios of 0.64±0.08 and 0.76±0.08 at PKU and Yufa, respectively, and secondary compounds accounted for more than 50% in fine particles. PMF model was used to resolve the particle modes. Three modes were resolved at Yufa, representing condensation, droplet and coarse mode. However, one more droplet mode with bigger size was resolved, which was considered probably from regional transport. Condensation mode accounted for 10%–60% of the total mass at both sites, indicating it must be taken into account in summer. The formation of sulfate was mainly attributed to in-cloud or aerosol droplet process (PKU 80%, Yufa 70%) and gas condensation process (PKU 14%, Yufa 22%). According to the thermodynamic instability of NH4NO3, size distributions of nitrate were classified as three categories by RH. The existence of Ca(NO3)2 in droplet mode indicated the reaction of HNO3 with crustal particles was also important in fine particles. Linear regression gave a rough estimation that 69% of the PM10 and 87% of the PM1.8 at PKU were regional contributions. Sulfate, ammonium and oxalate were formed regionally, with the regional contributions of 90%, 87% and 95% to PM1.8. Nitrate formation was local dominant. In summary regional secondary formation led to aerosol pollution in the summer of Beijing.


2021 ◽  
Vol 21 (10) ◽  
pp. 8273-8292
Author(s):  
Siqi Hou ◽  
Di Liu ◽  
Jingsha Xu ◽  
Tuan V. Vu ◽  
Xuefang Wu ◽  
...  

Abstract. Carbonaceous aerosol is a dominant component of fine particles in Beijing. However, it is challenging to apportion its sources. Here, we applied a newly developed method which combined radiocarbon (14C) with organic tracers to apportion the sources of fine carbonaceous particles at an urban (IAP) and a rural (PG) site of Beijing. PM2.5 filter samples (24 h) were collected at both sites from 10 November to 11 December 2016 and from 22 May to 24 June 2017. 14C was determined in 25 aerosol samples (13 at IAP and 12 at PG) representing low pollution to haze conditions. Biomass burning tracers (levoglucosan, mannosan, and galactosan) in the samples were also determined using gas chromatography–mass spectrometry (GC-MS). Higher contributions of fossil-derived OC (OCf) were found at the urban site. The OCf / OC ratio decreased in the summer samples (IAP: 67.8 ± 4.0 % in winter and 54.2 ± 11.7 % in summer; PG: 59.3 ± 5.7 % in winter and 50.0 ± 9.0 % in summer) due to less consumption of coal in the warm season. A novel extended Gelencsér (EG) method incorporating the 14C and organic tracer data was developed to estimate the fossil and non-fossil sources of primary and secondary OC (POC and SOC). It showed that fossil-derived POC was the largest contributor to OC (35.8 ± 10.5 % and 34.1 ± 8.7 % in wintertime for IAP and PG, 28.9 ± 7.4 % and 29.1 ± 9.4 % in summer), regardless of season. SOC contributed 50.0 ± 12.3 % and 47.2 ± 15.5 % at IAP and 42.0 ± 11.7 % and 43.0 ± 13.4 % at PG in the winter and summer sampling periods, respectively, within which the fossil-derived SOC was predominant and contributed more in winter. The non-fossil fractions of SOC increased in summer due to a larger biogenic component. Concentrations of biomass burning OC (OCbb) are resolved by the extended Gelencsér method, with average contributions (to total OC) of 10.6 ± 1.7 % and 10.4 ± 1.5 % in winter at IAP and PG and 6.5 ± 5.2 % and 17.9 ± 3.5 % in summer, respectively. Correlations of water-insoluble OC (WINSOC) and water-soluble OC (WSOC) with POC and SOC showed that although WINSOC was the major contributor to POC, a non-negligible fraction of WINSOC was found in SOC for both fossil and non-fossil sources, especially during winter. In summer, a greater proportion of WSOC from non-fossil sources was found in SOC. Comparisons of the source apportionment results with those obtained from a chemical mass balance model were generally good, except for the cooking aerosol.


2012 ◽  
Vol 9 (11) ◽  
pp. 4725-4737 ◽  
Author(s):  
K. Kawamura ◽  
K. Ono ◽  
E. Tachibana ◽  
B. Charriére ◽  
R. Sempéré

Abstract. Oxalic and other small dicarboxylic acids have been reported as important water-soluble organic constituents of atmospheric aerosols from different environments. Their molecular distributions are generally characterized by the predominance of oxalic acid (C2) followed by malonic (C3) and/or succinic (C4) acids. In this study, we collected marine aerosols from the Arctic Ocean during late summer in 2009 when sea ice was retreating. The marine aerosols were analyzed for the molecular distributions of dicarboxylic acids as well as ketocarboxylic acids and α-dicarbonyls to better understand the source of water-soluble organics and their photochemical processes in the high Arctic marine atmosphere. We found that diacids are more abundant than ketoacids and α-dicarbonyls, but their concentrations are generally low (< 30 ng m−3), except for one sample (up to 70 ng m−3) that was collected near the mouth of Mackenzie River during clear sky condition. Although the molecular compositions of diacids are in general characterized by the predominance of oxalic acid, a depletion of C2 was found in two samples in which C4 became the most abundant. Similar depletion of oxalic acid has previously been reported in the Arctic aerosols collected at Alert after polar sunrise and in the summer aerosols from the coast of Antarctica. Because the marine aerosols that showed a depletion of C2 were collected under the overcast and/or foggy conditions, we suggest that a photochemical decomposition of oxalic acid may have occurred in aqueous phase of aerosols over the Arctic Ocean via the photo dissociation of oxalate-Fe (III) complex. We also determined stable carbon isotopic compositions (δ13C) of bulk aerosol carbon and individual diacids. The δ13C of bulk aerosols showed −26.5‰ (range: −29.7 to −24.7‰, suggesting that marine aerosol carbon is derived from both terrestrial and marine organic materials. In contrast, oxalic acid showed much larger δ13C values (average: −20.9‰, range: −24.7‰ to −17.0‰) than those of bulk aerosol carbon. Interestingly, δ13C values of oxalic acid were higher than C3 (av. −26.6‰) and C4 (−25.8‰) diacids, suggesting that oxalic acid is enriched with 13C due to its photochemical processing (aging) in the marine atmosphere.


Sign in / Sign up

Export Citation Format

Share Document