scholarly journals Review of "Large-scale atmospheric circulation control on stable water isotopes in precipitation over the northwestern and southeastern Tibetan Plateau"

2017 ◽  
Author(s):  
Anonymous
2016 ◽  
Author(s):  
Xiaoxin Yang ◽  
Sunil Acharya ◽  
Tandong Yao

Abstract. The mid-latitude westerlies and South Asian Summer Monsoon (SASM) are two major atmospheric circulation systems influencing the Tibetan Plateau (TP). We report a seven-year (2007/2008–2013/2014) dataset of δ18O in precipitation (δ18Op) collected at three stations. Taxkorgan (TX) and Bulunkou (BLK) are located on the northwestern TP where westerly winds dominate while Lulang (LL) is situated on the southeastern TP where the SASM dominates. δ18O in precipitation (δ18Op) in northwestern TP varies with surface temperature (T) throughout the study period, and is depleted in 18O in precipitation during June to September when the monsoonal circulation enters the TP. Integration with model outputs suggests that large-scale atmospheric circulation plays a major role in isotopic seasonality in both regions. A teleconnection between precipitation on the northwestern TP and the El Niño-Southern Oscillation (ENSO) warm phase is suggested by changes in the relationship between δ18O and δD (e.g., reduced slope and weighted d-excess) in precipitation samples. These observations are indicative of a weakening of the mid-latitude westerly jet allowing local processes in the continental interior to become more dominant, thereby increasing the contribution of secondary evaporation from falling raindrops and kinetic fractionation. Under the conditions of a high Northern Annular Mode (NAM) the westerly jet is intensified over the southeastern TP which enhances local evaporation and continental recycling as revealed by a lower δD-δ18O slope and intercept, but higher d-excess average in contemporaneously collected precipitation samples. The significant correlation between T and δ18Op in the northwestern TP during various composite periods highlights a variation from 0.39 ‰ / ℃ (ENSO warm) to 0.77 ‰ / ℃ (high NAM), attributable to decreased (increased) water vapor availability over the northwestern TP during the ENSO warm (strong positive NAM) phase. ENSO cold and strong negative NAM phases show analogous effects on atmospheric circulation over both regions.


2017 ◽  
Vol 8 (4) ◽  
pp. 963-976 ◽  
Author(s):  
Jaak Jaagus ◽  
Mait Sepp ◽  
Toomas Tamm ◽  
Arvo Järvet ◽  
Kiira Mõisja

Abstract. Time series of monthly, seasonal and annual mean air temperature, precipitation, snow cover duration and specific runoff of rivers in Estonia are analysed for detecting of trends and regime shifts during 1951–2015. Trend analysis is realised using the Mann–Kendall test and regime shifts are detected with the Rodionov test (sequential t-test analysis of regime shifts). The results from Estonia are related to trends and regime shifts in time series of indices of large-scale atmospheric circulation. Annual mean air temperature has significantly increased at all 12 stations by 0.3–0.4 K decade−1. The warming trend was detected in all seasons but with the higher magnitude in spring and winter. Snow cover duration has decreased in Estonia by 3–4 days decade−1. Changes in precipitation are not clear and uniform due to their very high spatial and temporal variability. The most significant increase in precipitation was observed during the cold half-year, from November to March and also in June. A time series of specific runoff measured at 21 stations had significant seasonal changes during the study period. Winter values have increased by 0.4–0.9 L s−1 km−2 decade−1, while stronger changes are typical for western Estonia and weaker changes for eastern Estonia. At the same time, specific runoff in April and May have notably decreased indicating the shift of the runoff maximum to the earlier time, i.e. from April to March. Air temperature, precipitation, snow cover duration and specific runoff of rivers are highly correlated in winter determined by the large-scale atmospheric circulation. Correlation coefficients between the Arctic Oscillation (AO) and North Atlantic Oscillation (NAO) indices reflecting the intensity of westerlies, and the studied variables were 0.5–0.8. The main result of the analysis of regime shifts was the detection of coherent shifts for air temperature, snow cover duration and specific runoff in the late 1980s, mostly since the winter of 1988/1989, which are, in turn, synchronous with the shifts in winter circulation. For example, runoff abruptly increased in January, February and March but decreased in April. Regime shifts in annual specific runoff correspond to the alternation of wet and dry periods. A dry period started in 1964 or 1963, a wet period in 1978 and the next dry period at the beginning of the 21st century.


2011 ◽  
Vol 8 (2) ◽  
pp. 2235-2262
Author(s):  
E. Joigneaux ◽  
P. Albéric ◽  
H. Pauwels ◽  
C. Pagé ◽  
L. Terray ◽  
...  

Abstract. Under certain hydrological conditions it is possible for spring flow in karst systems to be reversed. When this occurs, the resulting invasion by surface water, i.e. the backflooding, represents a serious threat to groundwater quality because the surface water could well be contaminated. Here we examine the possible impact of future climate change on the occurrences of backflooding in a specific karst system, having first established the occurrence of such events in the selected study area over the past 40 yr. It would appear that backflooding has been more frequent since the 1980s, and that it is apparently linked to river flow variability on the pluri-annual scale. The avenue that we adopt here for studying recent and future variations of these events is based on a downscaling algorithm relating large-scale atmospheric circulation to local precipitation spatial patterns. The large-scale atmospheric circulation is viewed as a set of quasi-stationary and recurrent states, called weather types, and its variability as the transition between them. Based on a set of climate model projections, simulated changes in weather-type occurrence for the end of the century suggests that backflooding events can be expected to decrease in 2075–2099. If such is the case, then the potential risk for groundwater quality in the area will be greatly reduced compared to the current situation. Finally, our results also show the potential interest of the weather-type based downscaling approach for examining the impact of climate change on hydrological systems.


Sign in / Sign up

Export Citation Format

Share Document