scholarly journals Diagnosing the radiative and chemical contributions to future changes in tropical column ozone with the UM-UKCA chemistry-climate model

Author(s):  
James Keeble ◽  
Ewa M. Bednarz ◽  
Antara Banerjee ◽  
N. Luke Abraham ◽  
Neil R. P. Harris ◽  
...  

Abstract. Chemical and dynamical drivers of trends in tropical total column ozone (TCO3) for the recent past and future periods are explored using the UM-UKCA chemistry-climate model. A transient 1960-2100 simulation is analysed which follows the representative concentration pathway 6.0 (RCP6.0) emissions scenario for the future. Tropical averaged (10° S–10° N) TCO3 values decrease from the 1970s, reaching a minimum around 2000, and return to their 1980 values around 2040, consistent with the use and emission of ozone depleting substances (ODS), and their later controls under the Montreal Protocol. However, when the ozone column is subdivided into three partial columns (PCO3) that cover the upper stratosphere (PCO3US), lower stratosphere (PCO3LS) and troposphere (PCO3T), significant differences to the behaviour of the total column are seen. Modelled PCO3T values increase from 1960–2000 before remaining steady under this particular emissions scenario throughout the 21st century. PCO3LS values decrease rapidly from 1960–2000, remain steady until around 2050, before gradually decreasing further to 2100, never recovering to their 1980s values. PCO3US values decrease from 1960–2000, before rapidly increasing throughout the 21st century, recovering to 1980s values by ~ 2020, and are significantly higher than 1980s values by 2100. Using a series of idealised UM-UKCA time-slice simulations with varying concentrations of well-mixed greenhouse gases (GHG) and ODS set to either year 2000 or 2100 levels, we examine the main processes that drive the PCO3 responses in the three regions, and assess how these processes change under different emission scenarios. Finally, we present a simple, linearised model to describe the future evolution of tropical stratospheric column ozone values based on terms representing time-dependent abundances of GHG and ODS.

2017 ◽  
Vol 17 (22) ◽  
pp. 13801-13818 ◽  
Author(s):  
James Keeble ◽  
Ewa M. Bednarz ◽  
Antara Banerjee ◽  
N. Luke Abraham ◽  
Neil R. P. Harris ◽  
...  

Abstract. Chemical and dynamical drivers of trends in tropical total-column ozone (TCO3) for the recent past and future periods are explored using the UM-UKCA (Unified Model HadGEM3-A (Hewitt et al., 2011) coupled with the United Kingdom Chemistry and Aerosol scheme) chemistry–climate model. A transient 1960–2100 simulation is analysed which follows the representative concentration pathway 6.0 (RCP6.0) emissions scenario for the future. Tropical averaged (10° S–10° N) TCO3 values decrease from the 1970s, reach a minimum around 2000 and return to their 1980 values around 2040, consistent with the use and emission of halogenated ozone-depleting substances (ODSs), and their later controls under the Montreal Protocol. However, when the ozone column is subdivided into three partial columns (PCO3) that cover the upper stratosphere (PCO3US), lower stratosphere (PCO3LS) and troposphere (PCO3T), significant differences in the temporal behaviour of the partial columns are seen. Modelled PCO3T values under the RCP6.0 emissions scenario increase from 1960 to 2000 before remaining approximately constant throughout the 21st century. PCO3LS values decrease rapidly from 1960 to 2000 and remain constant from 2000 to 2050, before gradually decreasing further from 2050 to 2100 and never returning to their 1980s values. In contrast, PCO3US values decrease from 1960 to 2000, before increasing rapidly throughout the 21st century and returning to 1980s values by  ∼  2020, and reach significantly higher values by 2100. Using a series of idealised UM-UKCA time-slice simulations with concentrations of well-mixed greenhouse gases (GHGs) and halogenated ODS species set to either year 2000 or 2100 levels, we examine the main processes that drive the PCO3 responses in the three regions and assess how these processes change under different emission scenarios. Finally, we present a simple, linearised model to describe the future evolution of tropical stratospheric column ozone values based on terms representing time-dependent abundances of GHG and halogenated ODS.


2017 ◽  
Author(s):  
Olaf Morgenstern ◽  
Hideharu Akiyoshi ◽  
Yousuke Yamashita ◽  
Douglas E. Kinnison ◽  
Rolando R. Garcia ◽  
...  

Abstract. Ozone fields simulated for the Chemistry-Climate Model Initiative (CCMI) will be used as forcing data in the 6th Coupled Model Intercomparison Project (CMIP6). Here we assess, using reference and sensitivity simulations produced for phase 1 of CCMI, the suitability of CCMI-1 model results for this process, investigating the degree of consistency amongst models regarding their responses to variations in individual forcings. We consider the influences of methane, nitrous oxide, a combination of chlorinated or brominated ozone-depleting substances (ODSs), and a combination of carbon dioxide and other greenhouse gases (GHGs). We find varying degrees of consistency in the models' responses in ozone to these individual forcings, including some considerable disagreement. In particular, the response of total-column ozone to these forcings is less consistent across the multi-model ensemble than profile comparisons. The likely cause of this is lower-stratospheric transport and dynamical responses exhibiting substantial inter-model differences. The findings imply that the ozone fields derived from CCMI-1 are subject to considerable uncertainties regarding the impacts of these anthropogenic forcings.


2010 ◽  
Vol 10 (16) ◽  
pp. 7697-7707 ◽  
Author(s):  
J. S. Daniel ◽  
E. L. Fleming ◽  
R. W. Portmann ◽  
G. J. M. Velders ◽  
C. H. Jackman ◽  
...  

Abstract. Hypothetical reductions in future emissions of ozone-depleting substances (ODSs) and N2O are evaluated in terms of effects on equivalent effective stratospheric chlorine (EESC), globally-averaged total column ozone, and radiative forcing through 2100. Due to the established success of the Montreal Protocol, these actions can have only a fraction of the impact on ozone depletion that regulations already in force have had. If all anthropogenic ODS and N2O emissions were halted beginning in 2011, ozone is calculated to be higher by about 1–2% during the period 2030–2100 compared to a case of no additional restrictions. Direct radiative forcing by 2100 would be about 0.23 W/m2 lower from the elimination of anthropogenic N2O emissions and about 0.005 W/m2 lower from the destruction of the chlorofluorocarbon (CFC) bank. Due to the potential impact of N2O on future ozone levels, we provide an approach to incorporate it into the EESC formulation, which is used extensively in ozone depletion analyses. The ability of EESC to describe total ozone changes arising from additional ODS and N2O controls is also quantified.


2016 ◽  
Vol 16 (24) ◽  
pp. 15619-15627 ◽  
Author(s):  
Ulrike Langematz ◽  
Franziska Schmidt ◽  
Markus Kunze ◽  
Gregory E. Bodeker ◽  
Peter Braesicke

Abstract. The year 1980 has often been used as a benchmark for the return of Antarctic ozone to conditions assumed to be unaffected by emissions of ozone-depleting substances (ODSs), implying that anthropogenic ozone depletion in Antarctica started around 1980. Here, the extent of anthropogenically driven Antarctic ozone depletion prior to 1980 is examined using output from transient chemistry–climate model (CCM) simulations from 1960 to 2000 with prescribed changes of ozone-depleting substance concentrations in conjunction with observations. A regression model is used to attribute CCM modelled and observed changes in Antarctic total column ozone to halogen-driven chemistry prior to 1980. Wintertime Antarctic ozone is strongly affected by dynamical processes that vary in amplitude from year to year and from model to model. However, when the dynamical and chemical impacts on ozone are separated, all models consistently show a long-term, halogen-induced negative trend in Antarctic ozone from 1960 to 1980. The anthropogenically driven ozone loss from 1960 to 1980 ranges between 26.4 ± 3.4 and 49.8 ± 6.2 % of the total anthropogenic ozone depletion from 1960 to 2000. An even stronger ozone decline of 56.4 ± 6.8 % was estimated from ozone observations. This analysis of the observations and simulations from 17 CCMs clarifies that while the return of Antarctic ozone to 1980 values remains a valid milestone, achieving that milestone is not indicative of full recovery of the Antarctic ozone layer from the effects of ODSs.


2018 ◽  
Vol 18 (2) ◽  
pp. 1379-1394 ◽  
Author(s):  
William T. Ball ◽  
Justin Alsing ◽  
Daniel J. Mortlock ◽  
Johannes Staehelin ◽  
Joanna D. Haigh ◽  
...  

Abstract. Ozone forms in the Earth's atmosphere from the photodissociation of molecular oxygen, primarily in the tropical stratosphere. It is then transported to the extratropics by the Brewer–Dobson circulation (BDC), forming a protective ozone layer around the globe. Human emissions of halogen-containing ozone-depleting substances (hODSs) led to a decline in stratospheric ozone until they were banned by the Montreal Protocol, and since 1998 ozone in the upper stratosphere is rising again, likely the recovery from halogen-induced losses. Total column measurements of ozone between the Earth's surface and the top of the atmosphere indicate that the ozone layer has stopped declining across the globe, but no clear increase has been observed at latitudes between 60° S and 60° N outside the polar regions (60–90°). Here we report evidence from multiple satellite measurements that ozone in the lower stratosphere between 60° S and 60° N has indeed continued to decline since 1998. We find that, even though upper stratospheric ozone is recovering, the continuing downward trend in the lower stratosphere prevails, resulting in a downward trend in stratospheric column ozone between 60° S and 60° N. We find that total column ozone between 60° S and 60° N appears not to have decreased only because of increases in tropospheric column ozone that compensate for the stratospheric decreases. The reasons for the continued reduction of lower stratospheric ozone are not clear; models do not reproduce these trends, and thus the causes now urgently need to be established.


2018 ◽  
Vol 18 (2) ◽  
pp. 1091-1114 ◽  
Author(s):  
Olaf Morgenstern ◽  
Kane A. Stone ◽  
Robyn Schofield ◽  
Hideharu Akiyoshi ◽  
Yousuke Yamashita ◽  
...  

Abstract. Ozone fields simulated for the first phase of the Chemistry-Climate Model Initiative (CCMI-1) will be used as forcing data in the 6th Coupled Model Intercomparison Project. Here we assess, using reference and sensitivity simulations produced for CCMI-1, the suitability of CCMI-1 model results for this process, investigating the degree of consistency amongst models regarding their responses to variations in individual forcings. We consider the influences of methane, nitrous oxide, a combination of chlorinated or brominated ozone-depleting substances, and a combination of carbon dioxide and other greenhouse gases. We find varying degrees of consistency in the models' responses in ozone to these individual forcings, including some considerable disagreement. In particular, the response of total-column ozone to these forcings is less consistent across the multi-model ensemble than profile comparisons. We analyse how stratospheric age of air, a commonly used diagnostic of stratospheric transport, responds to the forcings. For this diagnostic we find some salient differences in model behaviour, which may explain some of the findings for ozone. The findings imply that the ozone fields derived from CCMI-1 are subject to considerable uncertainties regarding the impacts of these anthropogenic forcings. We offer some thoughts on how to best approach the problem of generating a consensus ozone database from a multi-model ensemble such as CCMI-1.


2012 ◽  
Vol 12 (10) ◽  
pp. 28467-28492
Author(s):  
V. Zubov ◽  
E. Rozanov ◽  
T. Egorova ◽  
I. Karol ◽  
W. Schmutz

Abstract. The chemistry-climate model (CCM) SOCOL has been used to evaluate the contribution of the main anthropogenic factors to the simulated changes of ozone and stratospheric dynamics during the 21st century. As the main anthropogenic factors we consider atmospheric concentration of the greenhouse gases (GHG), ozone depleting substances (ODS) and sea surface temperature and sea ice (SST/SI) distribution. The last one is considered here as an independent factor because the majority of the CCMs prescribe its evolution. We have performed three sets of "time-slice" numerical experiments with CCM SOCOL for the years 2000, 2050, and 2100 taking into account all factors separately and all together. It was established that the total column ozone increase during the first half of the 21st century is caused by the ODS, especially in the middle and high latitudes of both hemispheres. In the tropics and the extra tropical region of the Northern Hemisphere (NH) the SST/SI forcing plays very important role in the evolution of ozone atmospheric content during the second half of the 21st century. The GHG affect the temperature and ozone mainly in the upper stratosphere and in the lower stratosphere of the high latitudes of the Southern Hemisphere (SH). In the lower tropical stratosphere of the NH the long-term changes of the temperature, zonal wind velocity and the meridional circulation intensity are controlled mainly by the SST/SI. The strong contribution of the SST/SI to the ozone and circulation changes in the future implies that some differences between the simulated results could be caused by the applied SST/SI rather than by the CCM's deficiencies. We suggest taking this issue into account for the planning of the future model evaluation campaigns.


2013 ◽  
Vol 13 (9) ◽  
pp. 4697-4706 ◽  
Author(s):  
V. Zubov ◽  
E. Rozanov ◽  
T. Egorova ◽  
I. Karol ◽  
W. Schmutz

Abstract. The chemistry-climate model (CCM) SOCOL has been used to evaluate the contributions of the main anthropogenic factors to the simulated changes of ozone and stratospheric dynamics during the 21st century. As the main anthropogenic factors we consider the atmospheric concentration of the greenhouse gases (GHG), ozone depleting substances (ODS) and sea surface temperature and sea ice (SST/SI). The latter is considered here as an independent factor because the majority of the CCMs prescribe its evolution. We have performed three sets of "time slice" numerical experiments for the years 2000, 2050, and 2100 taking into account all factors separately and all together. The total column ozone increase during the first half of the 21st century is caused by the ODS, especially in the middle and high latitudes of both hemispheres. In the tropics and the extra tropical region of the Northern Hemisphere (NH) the SST/SI forcing plays a very important role in the evolution of atmospheric ozone during the second half of the 21st century. The GHG affect the temperature and ozone mainly in the upper stratosphere and in the lower stratosphere of the high latitudes of the Southern Hemisphere (SH). In the lower tropical stratosphere of the NH, the long-term changes of the temperature, zonal wind and the meridional circulation are controlled mainly by the SST/SI. The strong contribution of the SST/SI to the ozone and circulation changes in the future implies that some differences between the results by different CCMs could be caused by the applied SST/SI rather than by the CCM's deficiencies. We suggest taking this issue into account for the planning of the future model evaluation campaigns.


2012 ◽  
Vol 12 (23) ◽  
pp. 11309-11317 ◽  
Author(s):  
L. E. Revell ◽  
G. E. Bodeker ◽  
P. E. Huck ◽  
B. E. Williamson ◽  
E. Rozanov

Abstract. Through the 21st century, anthropogenic emissions of the greenhouse gases N2O and CH4 are projected to increase, thus increasing their atmospheric concentrations. Consequently, reactive nitrogen species produced from N2O and reactive hydrogen species produced from CH4 are expected to play an increasingly important role in determining stratospheric ozone concentrations. Eight chemistry-climate model simulations were performed to assess the sensitivity of stratospheric ozone to different emissions scenarios for N2O and CH4. Global-mean total column ozone increases through the 21st century in all eight simulations as a result of CO2-induced stratospheric cooling and decreasing stratospheric halogen concentrations. Larger N2O concentrations were associated with smaller ozone increases, due to reactive nitrogen-mediated ozone destruction. In the simulation with the largest N2O increase, global-mean total column ozone increased by 4.3 DU through the 21st century, compared with 10.0 DU in the simulation with the smallest N2O increase. In contrast, larger CH4 concentrations were associated with larger ozone increases; global-mean total column ozone increased by 16.7 DU through the 21st century in the simulation with the largest CH4 concentrations and by 4.4 DU in the simulation with the lowest CH4 concentrations. CH4 leads to ozone loss in the upper and lower stratosphere by increasing the rate of reactive hydrogen-mediated ozone loss cycles, however in the lower stratosphere and troposphere, CH4 leads to ozone increases due to photochemical smog-type chemistry. In addition to this mechanism, total column ozone increases due to H2O-induced cooling of the stratosphere, and slowing of the chlorine-catalyzed ozone loss cycles due to an increased rate of the CH4 + Cl reaction. Stratospheric column ozone through the 21st century exhibits a near-linear response to changes in N2O and CH4 surface concentrations, which provides a simple parameterization for the ozone response to changes in these gases.


2012 ◽  
Vol 12 (7) ◽  
pp. 17583-17605 ◽  
Author(s):  
L. E. Revell ◽  
G. E. Bodeker ◽  
P. E. Huck ◽  
B. E. Williamson ◽  
E. Rozanov

Abstract. Through the 21st century, anthropogenic emissions of the greenhouse gases N2O and CH4 are projected to increase, thus increasing their atmospheric concentrations. Consequently, reactive nitrogen species produced from N2O and reactive hydrogen species produced from CH4 are expected to play an increasingly important role in determining stratospheric ozone concentrations. Eight chemistry-climate model simulations were performed to assess the sensitivity of stratospheric ozone to different emissions scenarios for N2O and CH4. Increases in reactive nitrogen-mediated ozone loss resulting from increasing N2O concentrations lead to a decrease in global-mean total column ozone. Increasing CH4 concentrations increase the rate of reactive hydrogen-mediated ozone loss in the upper stratosphere. Overall however, increasing CH4 concentrations lead to an increase in global-mean total column ozone. Stratospheric column ozone over the 21st century exhibits a near-linear response to changes in N2O and CH4 surface concentrations, which provides a simple parameterization for the ozone response to changes in these gases.


Sign in / Sign up

Export Citation Format

Share Document