scholarly journals The OH<sup>*</sup>(3–1) layer emission altitude cannot be determined unambiguously from temperature comparison with lidars

2017 ◽  
Author(s):  
Tim Dunker

Abstract. I investigate the nightly mean emission height and width of the OH*(3–1) layer by comparing nightly mean temperatures measured by the ground–based spectrometer GRIPS 9 and the Na lidar at ALOMAR. The data set contains 42 coincident measurements between November 2010 and February 2014, when GRIPS 9 was in operation at the ALOMAR observatory (69.3° N, 16.0° E) in northern Norway. To closely resemble the mean temperature measured by GRIPS 9, I weighted each nightly mean temperature profile measured by the lidar using Gaussian distributions with 40 different centre altitudes and 40 different full widths at half maximum. In principle, one can thus determine the altitude and width of the OH*(3–1) layer by finding the minimum temperature difference between the two instruments. On most nights, several combinations of centre altitude and width yield a temperature difference of ±2 K. The generally assumed altitude of 87 km and width of 8 km is never an unambiguous, good solution for any of the measurements. Even for a fixed width of ∼ 8.4 km, one can sometimes find several centre altitudes that yield equally good temperature agreement. Weighted temperatures measured by lidar are not suitable to determine unambiguously the emission height and width of an OH* layer. If the OH*(3–1) rotational temperature is used as a proxy for the temperature at an altitude of 87 km with a width of 8.4 km, this proxy is representative to within ±16 K.

2018 ◽  
Vol 18 (9) ◽  
pp. 6691-6697 ◽  
Author(s):  
Tim Dunker

Abstract. I investigate the nightly mean emission height and width of the OH* (3–1) layer by comparing nightly mean temperatures measured by the ground-based spectrometer GRIPS 9 and the Na lidar at ALOMAR. The data set contains 42 coincident measurements taken between November 2010 and February 2014, when GRIPS 9 was in operation at the ALOMAR observatory (69.3∘ N, 16.0∘ E) in northern Norway. To closely resemble the mean temperature measured by GRIPS 9, I weight each nightly mean temperature profile measured by the lidar using Gaussian distributions with 40 different centre altitudes and 40 different full widths at half maximum. In principle, one can thus determine the altitude and width of an airglow layer by finding the minimum temperature difference between the two instruments. On most nights, several combinations of centre altitude and width yield a temperature difference of ±2 K. The generally assumed altitude of 87 km and width of 8 km is never an unambiguous, good solution for any of the measurements. Even for a fixed width of ∼ 8.4 km, one can sometimes find several centre altitudes that yield equally good temperature agreement. Weighted temperatures measured by lidar are not suitable to unambiguously determine the emission height and width of an airglow layer. However, when actual altitude and width data are lacking, a comparison with lidars can provide an estimate of how representative a measured rotational temperature is of an assumed altitude and width. I found the rotational temperature to represent the temperature at the commonly assumed altitude of 87.4 km and width of 8.4 km to within ±16 K, on average. This is not a measurement uncertainty.


2007 ◽  
Vol 572 ◽  
pp. 231-254 ◽  
Author(s):  
R. DU PUITS ◽  
C. RESAGK ◽  
A. TILGNER ◽  
F. H. BUSSE ◽  
A. THESS

We report high-resolution local-temperature measurements in the upper boundary layer of turbulent Rayleigh–Bénard (RB) convection with variable Rayleigh number Ra and aspect ratio Γ. The primary purpose of the work is to create a comprehensive data set of temperature profiles against which various phenomenological theories and numerical simulations can be tested. We performed two series of measurements for air (Pr = 0.7) in a cylindrical container, which cover a range from Ra≈109 to Ra≈1012 and from Γ≈1 to Γ≈10. In the first series Γ was varied while the temperature difference was kept constant, whereas in the second series the aspect ratio was set to its lowest possible value, Γ=1.13, and Ra was varied by changing the temperature difference. We present the profiles of the mean temperature, root-mean-square (r.m.s.) temperature fluctuation, skewness and kurtosis as functions of the vertical distance z from the cooling plate. Outside the (very short) linear part of the thermal boundary layer the non-dimensional mean temperature Θ is found to scale as Θ(z)∼zα, the exponent α≈0.5 depending only weakly on Ra and Γ. This result supports neither Prandtl's one-third law nor a logarithmic scaling law for the mean temperature. The r.m.s. temperature fluctuation σ is found to decay with increasing distance from the cooling plate according to σ(z)∼zβ, where the value of β is in the range -0.30>β>-0.42 and depends on both Ra and Γ. Priestley's β=−1/3 law is consistent with this finding but cannot explain the variation in the scaling exponent. In addition to profiles we also present and discuss boundary-layer thicknesses, Nusselt numbers and their scaling with Ra and Γ.


1983 ◽  
Vol 105 (3) ◽  
pp. 592-597 ◽  
Author(s):  
A. Pignotti ◽  
G. O. Cordero

Computer generated graphs are presented for the mean temperature difference in typical air cooler configurations, covering the combinations of numbers of passes and rows per pass of industrial interest. Two sets of independent variables are included in the graphs: the conventional one (heat capacity water ratio and cold fluid effectiveness), and the one required in an optimization technique of widespread use (hot fluid effectiveness and the number of heat transfer units). Flow arrangements with side-by-side and over-and-under passes, frequently found in actual practice, are discussed through examples.


1908 ◽  
Vol 28 ◽  
pp. 66-84 ◽  
Author(s):  
Sutherland Simpson

SUMMARYThe body-temperature of the following fishes, crustaceans, and echinoderms has been examined and compared with the temperature of the water in which they live:—Cod-fish (Gadus morrhua), ling (Molva vulgaris), torsk (Brosmius brosme), coal-fish or saithe (Gadus virens), haddock (Gadus œgelfinus), flounder (Pleuronectes flesus), smelt (Osmerus eperlanus), dog-fish (Scyllium catulus), shore crab (Carcinus mœnas), edible crab (Cancer pagurus), lobster (Homarus vulgaris), sea-urchin (Echinus esculentus), and starfish (Asterias rubens). The minimum, maximum, and mean temperature difference for each species are given in the following table:—The excess of temperature is most evident in the larger specimens. This is well shown in the case of the coal-fish, where in the adult it was 0°·7 C., and in the great majority (11 out of 12) of the young of the first year, 0°·0 C. The body-weight and the conditions under which the fish are captured probably form the most important factors in determining the temperature difference.In 14 codfish, where the rectal, blood, and muscle temperatures were recorded in the same individual, it was found to be highest in the muscle and lowest in the rectum, the mean temperature difference being 0°·46 C. for the muscle, 0°·41 C for the blood, and 0°·36 C. for the rectum.


2019 ◽  
Vol 8 (2) ◽  
pp. 74-78
Author(s):  
Muhammad Zubair ◽  
Ghulam Saqulain ◽  
Arfat Jawaid

Background: Acute Otitis Media (AOM) is a common upper respiratory tract infection (URTI) in children and usually presents with fever and otalgia. AOM is characterized by congested tympanic membrane and possible increase in temperature, which might be picked up by infrared tympanic thermometry. The objective of this study was to compare the temperature difference of tympanic membrane of affected ear with the unaffected ear and axilla in unilateral acute otitis media, and compare it with the control group.Material and Methods: This case control study comprised of 200 cases of both genders, aged up to 5 years. They were divided into two groups; Group A included 100 clinically diagnosed cases of acute otitis media (AOM), who reported in the ENT Outpatient Department (OPD) and Group B included 100 controls who presented in General Filter Clinic with no ear complaints. Cases with chronic ear disease, ear discharge, and use of local drugs including ear drops, impacted ear wax, tragal tenderness and congenital malformations of the ear were excluded by taking a detailed history. Clinical examination including otoscopy by an expert was done before subjecting patients to axillary and tympanic thermometry measurements and data recording. Data was collected and tabulated using Microsoft Excel Worksheet and analyzed by SPSS 16. Qualitative data like gender were presented as percentage and ratio, while means and standard deviation were calculated for the quantitative data. Difference between the means of experimental and control groups were analyzed by independent sample t-test and P value of less than or equal to 0.05 was taken as significant.Results: This study included 100 cases of unilateral AOM and 100 normal controls without AOM. In patients with AOM, the mean temperature difference between the affected ear and axilla was 1.41ºF as compared to 0.075ºF in controls (p=0.026). While the mean temperature difference between the affected ear and other ear was 0.65ºF as compared to 0.19ºF in controls (p=0.069).Conclusion: In acute otitis media, the temperature of affected ear is significantly higher than axilla but was not significantly higher than the other ear. The finding may help establish thermometry as a diagnostic tool in clinics manned by doctors not competent to do otoscopy.


1975 ◽  
Vol 97 (1) ◽  
pp. 5-8 ◽  
Author(s):  
W. Roetzel ◽  
F. J. L. Nicole

An approximate equation together with empirical coefficients is presented for the fast calculation of the mean temperature difference of nine countercurrent cross-flow arrangements, as applied in air-cooled heat exchangers. The same equation can be used for other flow systems, as demonstrated for one shell-and-tube arrangement.


Author(s):  
Külli Kangur ◽  
Erki Tammiksaar ◽  
Daniel Pauly

AbstractThis contribution applies the “mean temperature of the catch” (MTC) concept of Cheung et al. (Nature 497:365–368, 2013) to fish catch data for Lake Peipsi, Estonia/Russia, covering the years 1931 to 2019. The preferred temperature of each of the ten target fish species was obtained from the literature, and combined with the species-specific catch data to obtain MTC values for each year. The analysis of the MTC time series thus obtained with a segmented regression yielded two trend lines, one horizontal at 14.5 °C (1931–1986), and the other (1987–2019) ascending with a slope 0.85 °C·decade−1. Overall, the segmented regression model explains over half of the variance of the MTC data set (multiple R2 = 0.53; adjusted R2 = 0.51). Lake surface water temperatures correlate with MTC, even though weakly (r = 0.30), when considering a 2-year time lag. The fish community of the shallow Lake Peipsi reacts more strongly to temperature changes than marine ecosystems so far studied using the MTC.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Aashish Gupta ◽  
Jacob Puliyel ◽  
Bhawana Garg ◽  
Pramod Upadhyay

Abstract Background To study mean core to peripheral temperature difference (CPTD) and the mean lactate levels over the first 6 h of admission to hospital, as indicators of prognosis in critically ill children. Methods A prospective observational study in a tertiary level Pediatrics ICU in Delhi, India. Seventy eight paediatric patients from 1 month to 12 years were studied. Children with physical trauma, post-surgical patients and patients with peripheral vascular disease were excluded. Core temperature (skin over temporal artery) to peripheral temperature (big toe) difference was measured repeatedly every minute over 6 h and mean of temperature difference was calculated. Pediatric Risk of Mortality (PRISM) II, lactate clearance and mean lactate levels during that time were also studied. In-hospital mortality was used as the outcome measure. Results Mean temperature difference During the first 6 h after admission the mean temperature difference was 9.37 ± 2 °C in those who died and 3.71 ± 2.27 °C in those who survived (p < 0.0001). The area under the receiver operating curve (AUROC) was 0.953 (p < 0.0001). The comparable AUROC of PRISM II was 0.999 (p < 0.0001). Mean Lactate Mean lactate level in the first 6 h was 7.1 ± 2.02 mg/dl in those who died compared to 2.86 ± 0.87 mg/dl in those who survived (p < 0.0001). The AUROC curve for mean lactate was 0.989 (95% CI = 0.933 to 0.999; p < 0.0001). AUROC for the lactate clearance was 0.682 (p = 0.0214). Conclusions The mean core to peripheral temperature difference over the first 6 h is an easy-to-use and non-invasive method that is useful to predict mortality in children admitted to the Pediatric ICU. The mean lactate during the first 6 h of Pediatric ICU admission is a better index of prognosis than the lactate clearance over the same time period. They may be used as components of a scoring system to predict mortality.


Sign in / Sign up

Export Citation Format

Share Document