scholarly journals Supplementary material to "Two decades of in-situ temperature measurements in the upper troposphere and lowermost stratosphere from IAGOS long-term routine observation"

Author(s):  
Florian Berkes ◽  
Patrick Neis ◽  
Martin G. Schultz ◽  
Ulrich Bundke ◽  
Susanne Rohs ◽  
...  
2017 ◽  
Vol 17 (7) ◽  
pp. 4493-4511 ◽  
Author(s):  
Shu-peng Ho ◽  
Liang Peng ◽  
Holger Vömel

Abstract. Radiosonde observations (RAOBs) have provided the only long-term global in situ temperature measurements in the troposphere and lower stratosphere since 1958. In this study, we use consistently reprocessed Global Positioning System (GPS) radio occultation (RO) temperature data derived from the COSMIC and Metop-A/GRAS missions from 2006 to 2014 to characterize the inter-seasonal and interannual variability of temperature biases in the upper troposphere and lower stratosphere for different radiosonde sensor types. The results show that the temperature biases for different sensor types are mainly due to (i) uncorrected solar-zenith-angle-dependent errors and (ii) change of radiation correction. The mean radiosonde–RO global daytime temperature difference in the layer from 200 to 20 hPa for Vaisala RS92 is equal to 0.20 K. The corresponding difference is equal to −0.06 K for Sippican, 0.71 K for VIZ-B2, 0.66 K for Russian AVK-MRZ, and 0.18 K for Shanghai. The global daytime trend of differences for Vaisala RS92 and RO temperature at 50 hPa is equal to 0.07 K/5 yr. Although there still exist uncertainties for Vaisala RS92 temperature measurement over different geographical locations, the global trend of temperature differences between Vaisala RS92 and RO from June 2006 to April 2014 is within ±0.09 K/5 yr. Compared with Vaisala RS80, Vaisala RS90, and sondes from other manufacturers, the Vaisala RS92 seems to provide the most accurate RAOB temperature measurements, and these can potentially be used to construct long-term temperature climate data records (CDRs). Results from this study also demonstrate the feasibility of using RO data to correct RAOB temperature biases for different sensor types.


2017 ◽  
Author(s):  
Florian Berkes ◽  
Patrick Neis ◽  
Martin G. Schultz ◽  
Ulrich Bundke ◽  
Susanne Rohs ◽  
...  

Abstract. Despite several studies on temperature trends in the tropopause region, a comprehensive understanding of the evolution of temperatures in this climate-sensitive region of the atmosphere remains elusive. Here we present a unique global-scale, long-term data set of high-resolution in-situ temperature data measured aboard passenger aircraft within the European Research Infrastructure IAGOS (In-service Aircraft for a Global Observing System, www.iagos.org). This data set is used to investigate temperature trends within the global upper troposphere and lowermost stratosphere (UTLS) for the period 1995 to 2012 in different geographical regions and vertical layers of the UTLS. The largest amount of observations is available over the North Atlantic. Here, a neutral temperature trend is found within the lowermost stratosphere. This contradicts the temperature trend in the European Centre for Medium Range Weather Forecast (ECMWF) ERA-Interim reanalysis, where a significant (95 % confidence) temperature increase of +0.56 K/decade is obtained. Differences between trends derived from observations and reanalysis data can be traced back to changes in the temperature bias between observation and model data over the studied period. This study demonstrates the value of the IAGOS temperature observations as anchor point for the evaluation of reanalyses and its suitability for independent trend analyses.


2021 ◽  
Vol 28 (1) ◽  
Author(s):  
А. P. Tolstosheev ◽  
E. G. Lunev ◽  
S. V. Motyzhev ◽  
V. Z. Dykman ◽  
◽  
...  

Purpose. Reliability of knowledge about the ocean dynamics and climate variability is largely limited for lack of systematic in situ observations of the sea surface layer salinity, which is one of the basic hydrological parameters determining circulation and stratification of the water masses. The study is aimed at developing an autonomous device for long-term monitoring of salinity in the seawater upper layer. Methods and Results. One of the most effective tools for in situ observations of the ocean upper layer is the global network of surface drifting buoys – drifters. At present, the network consists of more than 1500 buoys, but only a few of them provide sea surface salinity observations within the framework of a limited number of pilot experiments. In the drifters, salinity is calculated by the traditional method using the results of the electrical conductivity and temperature measurements. There are a few problems related both to the principle of determining salinity by this method and to providing long-term stable running of conductivity sensors under the conditions of pollution and biological fouling. A drifter equipped with the module for the sound velocity and temperature measurements used for calculating salinity by an alternative method just aboard the drifter, was developed in Marine Hydrophysical Institute, Russian Academy of Sciences. The sound velocity and temperature module includes a specially designed time-of-flight sound velocity sensor with the fixed base and a quartz temperature sensor. In course of two years, numerous laboratory and in situ tests of several prototypes of the sound velocity and temperature module were performed. The laboratory tests showed that the repeatability limits for the results of the sound velocity measurements in the distilled water were 0.02 m/s. According to the data of the long-term in situ tests performed at intensive biological fouling, the error of salinity estimation resulted from of the sound velocity and temperature measurements were within 0.05 ‰. This result permits to expect that the sound velocity and temperature module parameters will remain stable in real conditions of long-term autonomous operation. Conclusions. The obtained results make it possible to recommend application of the drifters equipped with the modules for the sound velocity and temperature measurements as an effective tool for regular operational monitoring of the salinity field of the upper sea layer.


2016 ◽  
Author(s):  
Shu-Peng Ho ◽  
Liang Peng ◽  
Holger Vömel

Abstract. Radiosonde observations (RAOBs) have provided the only long-term global in situ temperature measurements in the troposphere and lower stratosphere since 1958. In this study, we use consistently reprocessed Global Positioning System (GPS) radio occultation (RO) temperature data derived from COSMIC and Metop-A/GRAS missions from 2006 to 2014 to characterize the inter-seasonal and inter-annual variability of temperature biases in the lower stratosphere for different sensor types. The results show that the RAOB temperature biases for different RAOB sensor types are mainly owing to i) uncorrected solar zenith angle dependent errors, and ii) change of radiation correction. The mean daytime temperature difference (ΔT) for Vaisala RS92 is equal to 0.18 K in Australia, 0.20 K in Germany, 0.10 K in Canada, 0.13 K in England, and 0.33 K in Brazil. The mean daytime ΔT is equal to −0.06 K for Sippican, 0.71 K for VIZ-B2, 0.66 K for AVK-MRZ, and 0.18 K for Shanghai. The daytime trend of anomalies for Vaisala RS92 and RO temperature at 50 hPa is equal to 0.00 K/5 yrs over United States, −0.02 K/5 yrs over Germany, 0.17 K/5 yrs over Australia, 0.23 K/5 yrs over Canada, 0.26 K/5 yrs over England, and 0.12 K/5 yrs over Brazil, respectively. Although there still exist uncertainties for Vaisala RS92 temperature measurements over different geographical locations, the global trend of temperature anomaly between Vaisala RS92 and RO from June 2006 to April 2014 is within +/−0.09 K/5 yrs globally. Comparing with Vaisala RS80, Vaisala RS90 and sondes from other manufacturers, the Vaisala RS92 seems to provide the best RAOB temperature measurements, which can potentially be used to construct long term temperature CDRs. Results from this study also demonstrate the feasibility to use RO data to correct RAOB temperature biases for different sensor types.


2021 ◽  
Vol 37 (1) ◽  
Author(s):  
A. P. Tolstosheev ◽  
E. G. Lunev ◽  
S. V. Motyzhev ◽  
V. Z. Dykman ◽  
◽  
...  

Purpose. Reliability of knowledge about the ocean dynamics and climate variability is largely limited for lack of systematic in situ observations of the sea surface layer salinity, which is one of the basic hydrological parameters determining circulation and stratification of the water masses. The study is aimed at developing an autonomous device for long-term monitoring of salinity in the seawater upper layer. Methods and Results. One of the most effective tools for in situ observations of the ocean upper layer is the global network of surface drifting buoys – drifters. At present, the network consists of more than 1500 buoys, but only a few of them provide sea surface salinity observations within the framework of a limited number of pilot experiments. In the drifters, salinity is calculated by the traditional method using the results of the electrical conductivity and temperature measurements. There are a few problems related both to the principle of determining salinity by this method and to providing longterm stable running of conductivity sensors under the conditions of pollution and biological fouling. A drifter equipped with the module for the sound velocity and temperature measurements used for calculating salinity by an alternative method just aboard the drifter, was developed in Marine Hydrophysical Institute, Russian Academy of Sciences. The sound velocity and temperature module includes a specially designed time-of-flight sound velocity sensor with the fixed base and a quartz temperature sensor. In course of two years, numerous laboratory and in situ tests of several prototypes of the sound velocity and temperature module were performed. The laboratory tests showed that the repeatability limits for the results of the sound velocity measurements in the distilled water were ± 0.02 m/s. According to the data of the long-term in situ tests performed at intensive biological fouling, the error of salinity estimation resulted from of the sound velocity and temperature measurements were within ± 0.05 ‰. This result permits to expect that the sound velocity and temperature module parameters will remain stable in real conditions of long-term autonomous operation. Conclusions. The obtained results make it possible to recommend application of the drifters equipped with the modules for the sound velocity and temperature measurements as an effective tool for regular operational monitoring of the salinity field of the upper sea layer


2008 ◽  
Vol 8 (3) ◽  
pp. 10627-10664
Author(s):  
R. James ◽  
B. Legras

Abstract. Both in situ measurements and satellite observations indicate evidence of mixing in the upper troposphere (UT) and the lower-stratosphere (LS). In this study, the measurements performed during the Pre-AVE and Costa-Rica AVE campaigns are analysed with diffusive back-trajectories to assess mixing properties in the tropical and the subtropical UT/LS. A description of cross-tropopause pathways and mixing time scales is provided. In the subtropics, Troposphere-Stratosphere mixing processes are found to differ in the vicinity of the tropopause and at higher altitudes. Below 350 K, the mixing line observed during Pre-AVE is shown to result from fast and local cross-tropopause irreversible exchange, involving two initially distant air masses with distinct chemical compositions. For measurements located above 350 K, mixing of the tropospheric air in the subtropical stratosphere occurs over a period of a month, the origins of the tropospheric source being localised in the tropical UT and the tropical boundary layer. In the tropics, quantitative reconstructions of CO and O3 profiles above 360 K are obtained for one month back-trajectories calculations, pointing out that long term mixing is essential to determine the chemical composition in the tropical ascent. In particular, the existence of two-way meridional irreversible exchanges between 360 and 450 K is found to export tropical air in the subtropical stratosphere and to entrain old stratospheric air in the tropical ascent. Calculations of the Lagrangian mean age of air is shown to be in qualitative agreement with the CO2 observations and diabatic calculations.


2010 ◽  
Vol 3 (4) ◽  
pp. 3987-4007
Author(s):  
M. Schneider ◽  
E. Sepúlveda ◽  
O. García ◽  
F. Hase ◽  
T. Blumenstock

Abstract. We show that the near infrared solar absorption spectra recorded in the framework of the Total Carbon Column Observing Network (TCCON) can be used to derive the vertical distribution of tropospheric water vapour. Using spectral H2O signatures in the 4500–4700 cm−1 region one can well distinguish lower from middle/upper tropospheric water vapour concentrations. The vertical resolution is about 3 and 6 km, for the lower and middle/upper troposphere, respectively. We document the quality of the remotely-sensed profiles by comparisons with coincident in-situ Vaisala RS92 radiosonde measurements. The agreement of both techniques is very satisfactory. Due to the long-term strategy of the network and the high measurement frequency, the TCCON water vapour profile data offer novel opportunities for estimating the water vapour variability at different time scales and altitudes.


2017 ◽  
Vol 17 (20) ◽  
pp. 12495-12508 ◽  
Author(s):  
Florian Berkes ◽  
Patrick Neis ◽  
Martin G. Schultz ◽  
Ulrich Bundke ◽  
Susanne Rohs ◽  
...  

Abstract. Despite several studies on temperature trends in the tropopause region, a comprehensive understanding of the evolution of temperatures in this climate-sensitive region of the atmosphere remains elusive. Here we present a unique global-scale, long-term data set of high-resolution in situ temperature data measured aboard passenger aircraft within the European Research Infrastructure IAGOS (In-service Aircraft for a Global Observing System; http://www.iagos.org). This data set is used to investigate temperature trends within the global upper troposphere and lowermost stratosphere (UTLS,  <  13 km) for the period of 1995–2012 in different geographical regions and vertical layers of the UTLS. The largest number of observations is available over the North Atlantic. Here, a neutral temperature trend is found within the lowermost stratosphere. This contradicts the temperature trend in the European Centre for Medium-Range Weather Forecasts (ECMWF) ERA-Interim reanalysis, in which a significant (95 % confidence) temperature increase of +0.56 K decade−1 is found. Differences between trends derived from observations and reanalysis data can be traced back to changes in the temperature difference between observation and model data over the period studied. This study underpins the value of the IAGOS temperature observations as an anchor point for the evaluation of reanalyses and its suitability for independent trend analyses.


2009 ◽  
Vol 22 (4) ◽  
pp. 1037-1051 ◽  
Author(s):  
Yanjun Guo ◽  
Yihui Ding

Abstract In this paper, radiosonde temperature time series (RTT) from 1958 to 2005 collected by the 116-station Chinese radiosonde network are examined. Quality control and homogenization are used to obtain a reliable RTT. The homogenization results revealed significant discontinuities in the RTT. Analysis suggested that 70% data availability is the minimum data requirement (MDR) for these RTTs. A new dataset is built by meeting this MDR, which reduced the number of potential stations from 116 to 92. Analysis on this dataset reveals that warming trends in the troposphere and cooling trends in the stratosphere were weakened by reducing the stations. Averaged RTT trends for China were generally consistent with those of global scale, but with some discrepancies. During 1958–2005, averaged temperatures in China tended to decrease in the lower stratosphere and upper troposphere, in contrast to warming trends in the mid- and lower troposphere. The trends varied with two different subperiods. For 1958–78, cooling trends in the entire atmosphere were similar to trends at the global scale. For 1979–2005, warming occurred in the lower troposphere, with the amplitude of the warming tending to weaken with increases in altitude and shifting to a cooling trend above 400 hPa. Seasonal trend structures suggest that warming in the lower troposphere is attributable to temperature increases in December–February (DJF); cooling in the upper troposphere and stratosphere was found mainly in June–August (JJA). Unlike with results of a larger spatial scale, a robust cooling layer was found around 300 hPa.


Sign in / Sign up

Export Citation Format

Share Document