scholarly journals Two decades of in-situ temperature measurements in the upper troposphere and lowermost stratosphere from IAGOS long-term routine observation

2017 ◽  
Author(s):  
Florian Berkes ◽  
Patrick Neis ◽  
Martin G. Schultz ◽  
Ulrich Bundke ◽  
Susanne Rohs ◽  
...  

Abstract. Despite several studies on temperature trends in the tropopause region, a comprehensive understanding of the evolution of temperatures in this climate-sensitive region of the atmosphere remains elusive. Here we present a unique global-scale, long-term data set of high-resolution in-situ temperature data measured aboard passenger aircraft within the European Research Infrastructure IAGOS (In-service Aircraft for a Global Observing System, www.iagos.org). This data set is used to investigate temperature trends within the global upper troposphere and lowermost stratosphere (UTLS) for the period 1995 to 2012 in different geographical regions and vertical layers of the UTLS. The largest amount of observations is available over the North Atlantic. Here, a neutral temperature trend is found within the lowermost stratosphere. This contradicts the temperature trend in the European Centre for Medium Range Weather Forecast (ECMWF) ERA-Interim reanalysis, where a significant (95 % confidence) temperature increase of +0.56 K/decade is obtained. Differences between trends derived from observations and reanalysis data can be traced back to changes in the temperature bias between observation and model data over the studied period. This study demonstrates the value of the IAGOS temperature observations as anchor point for the evaluation of reanalyses and its suitability for independent trend analyses.

2017 ◽  
Vol 17 (20) ◽  
pp. 12495-12508 ◽  
Author(s):  
Florian Berkes ◽  
Patrick Neis ◽  
Martin G. Schultz ◽  
Ulrich Bundke ◽  
Susanne Rohs ◽  
...  

Abstract. Despite several studies on temperature trends in the tropopause region, a comprehensive understanding of the evolution of temperatures in this climate-sensitive region of the atmosphere remains elusive. Here we present a unique global-scale, long-term data set of high-resolution in situ temperature data measured aboard passenger aircraft within the European Research Infrastructure IAGOS (In-service Aircraft for a Global Observing System; http://www.iagos.org). This data set is used to investigate temperature trends within the global upper troposphere and lowermost stratosphere (UTLS,  <  13 km) for the period of 1995–2012 in different geographical regions and vertical layers of the UTLS. The largest number of observations is available over the North Atlantic. Here, a neutral temperature trend is found within the lowermost stratosphere. This contradicts the temperature trend in the European Centre for Medium-Range Weather Forecasts (ECMWF) ERA-Interim reanalysis, in which a significant (95 % confidence) temperature increase of +0.56 K decade−1 is found. Differences between trends derived from observations and reanalysis data can be traced back to changes in the temperature difference between observation and model data over the period studied. This study underpins the value of the IAGOS temperature observations as an anchor point for the evaluation of reanalyses and its suitability for independent trend analyses.


2017 ◽  
Vol 200 ◽  
pp. 229-249 ◽  
Author(s):  
Andreas Petzold ◽  
Martina Krämer ◽  
Patrick Neis ◽  
Christian Rolf ◽  
Susanne Rohs ◽  
...  

IAGOS (In-service Aircraft for a Global Observing System) performs long-term routinein situobservations of atmospheric chemical composition (O3, CO, NOx, NOy, CO2, CH4), water vapour, aerosols, clouds, and temperature on a global scale by operating compact instruments on board of passenger aircraft. The unique characteristics of the IAGOS data set originate from the global scale sampling on air traffic routes with similar instrumentation such that the observations are truly comparable and well suited for atmospheric research on a statistical basis. Here, we present the analysis of 15 months of simultaneous observations of relative humidity with respect to ice (RHice) and ice crystal number concentration in cirrus (Nice) from July 2014 to October 2015. The joint data set of 360 hours of RHice–Niceobservations in the global upper troposphere and tropopause region is analysed with respect to the in-cloud distribution of RHiceand related cirrus properties. The majority of the observed cirrus is thin withNice< 0.1 cm−3. The respective fractions of all cloud observations range from 90% over the mid-latitude North Atlantic Ocean and the Eurasian Continent to 67% over the subtropical and tropical Pacific Ocean. The in-cloud RHicedistributions do not depend on the geographical region of sampling. Types of cirrus origin (in situorigin, liquid origin) are inferred for differentNiceregimes and geographical regions. Most importantly, we found that in-cloud RHiceshows a strong correlation toNicewith slightly supersaturated dynamic equilibrium RHiceassociated with higherNicevalues in stronger updrafts.


2009 ◽  
Vol 22 (4) ◽  
pp. 1037-1051 ◽  
Author(s):  
Yanjun Guo ◽  
Yihui Ding

Abstract In this paper, radiosonde temperature time series (RTT) from 1958 to 2005 collected by the 116-station Chinese radiosonde network are examined. Quality control and homogenization are used to obtain a reliable RTT. The homogenization results revealed significant discontinuities in the RTT. Analysis suggested that 70% data availability is the minimum data requirement (MDR) for these RTTs. A new dataset is built by meeting this MDR, which reduced the number of potential stations from 116 to 92. Analysis on this dataset reveals that warming trends in the troposphere and cooling trends in the stratosphere were weakened by reducing the stations. Averaged RTT trends for China were generally consistent with those of global scale, but with some discrepancies. During 1958–2005, averaged temperatures in China tended to decrease in the lower stratosphere and upper troposphere, in contrast to warming trends in the mid- and lower troposphere. The trends varied with two different subperiods. For 1958–78, cooling trends in the entire atmosphere were similar to trends at the global scale. For 1979–2005, warming occurred in the lower troposphere, with the amplitude of the warming tending to weaken with increases in altitude and shifting to a cooling trend above 400 hPa. Seasonal trend structures suggest that warming in the lower troposphere is attributable to temperature increases in December–February (DJF); cooling in the upper troposphere and stratosphere was found mainly in June–August (JJA). Unlike with results of a larger spatial scale, a robust cooling layer was found around 300 hPa.


2020 ◽  
Author(s):  
Yann Cohen ◽  
Virginie Marécal ◽  
Béatrice Josse ◽  
Valérie Thouret

Abstract. A wide variety of observation data sets are used to assess long-term simulations provided by chemistry-climate models (CCMs) and chemistry-transport models (CTMs). However, the upper troposphere – lower stratosphere (UTLS) has hardly been assessed in the models yet. Observations performed in the framework of IAGOS (In-service Aircraft for a Global Observing System) combine the advantages of in situ airborne measurements in the UTLS with an almost global-scale sampling, a ~ 20-year monitoring period and a high frequency. If a few model assessments have been made using IAGOS database, none of them took advantage of the dense and high-resolution cruise data in their whole ensemble yet. The present study proposes a method to compare this large IAGOS data set to long-term simulations used for chemistry-climate studies. For this purpose, a new software (named Interpol-IAGOS) projects all IAGOS data on the 3D grid of the chosen model with a monthly resolution, since generally chemistry-climate models provide 3D outputs as monthly means. This provides a new IAGOS data set (IAGOS-DM) mapped at the model's grid and time resolution. As a first application, the REF-C1SD simulation generated by MOCAGE CTM in the framework of CCMI phase-I has been evaluated during the 1994–2013 period for ozone and the 2002–2013 period for carbon monoxide. This comparison is exclusively based on the grid cells sampled by IAGOS, thus the assessed model output (MOCAGE-M) is obtained by applying a corresponding mask onto the grid. First, climatologies are derived from the IAGOS-DM product. Good correlations are reported between IAGOS-DM and MOCAGE-M spatial distributions. As an attempt to analyse MOCAGE-M behaviour in the upper troposphere (UT) and the lower stratosphere (LS) separately, UT and LS data in IAGOS-DM were sorted according to potential vorticity. From this, we derived O3 and CO seasonal cycles in eight regions well sampled by IAGOS flights in the northern mid-latitudes. They are remarkably well-reproduced by the model for lower-stratospheric O3 and also good for upper-tropospheric CO. The data projection onto the model's grid is a necessary step for a more accurate assessment, as it allows to filter out biases only due to either spatial or temporal resolution. Beyond the MOCAGE REF-C1SD evaluation presented in this paper, the method could be used by CCMI models for individual assessments in the UTLS and for model intercomparisons with respect to IAGOS data set.


Atmosphere ◽  
2020 ◽  
Vol 11 (3) ◽  
pp. 235
Author(s):  
Michal Kozubek ◽  
Peter Krizan ◽  
Jan Lastovicka

The stratosphere and its dynamics are a very important part of atmospheric circulation. We need to analyze its climatology, as well as long-term trends. A long-term trend study needs homogenous datasets without significant artificial discontinuities. The analysis is based on the two newest released reanalyses, Modern Era-Retrospective Analysis (MERRA2) and European Center for Medium-Range Weather Forecast Reanalysis (ERA5). The aim of this study is to detect discontinuities in the temperature time series from the above reanalyses with the help of the Pettitt homogeneity test for pressure layers above 500 hPa up to 1 hPa in January and February, and show a comparison of temperature trends from the studied reanalyses and GPS radio occultation (GPS RO). We search for individual grid points where these discontinuities occur, and also for the years when they occur (geographical and temporal distribution). As expected, the study confirms better results for the Northern Hemisphere due to the denser data coverage. A high number of grid points with jumps on the Southern Hemisphere is found, especially at higher pressure levels (from 50 hPa). The spatial and vertical distribution of discontinuities is also presented. The vertical distribution reveals the reduction of the number of jumps around 10 hPa, especially for ERA5 reanalysis. The results show that ERA5 has significantly less jumps than MERRA2. We also study temperature trends from reanalyses and GPS RO and our analysis shows that the agreement between the reanalyses and observations are very good for the period 2006–2018.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Rachel M. Pilla ◽  
Craig E. Williamson ◽  
Boris V. Adamovich ◽  
Rita Adrian ◽  
Orlane Anneville ◽  
...  

AbstractGlobally, lake surface water temperatures have warmed rapidly relative to air temperatures, but changes in deepwater temperatures and vertical thermal structure are still largely unknown. We have compiled the most comprehensive data set to date of long-term (1970–2009) summertime vertical temperature profiles in lakes across the world to examine trends and drivers of whole-lake vertical thermal structure. We found significant increases in surface water temperatures across lakes at an average rate of + 0.37 °C decade−1, comparable to changes reported previously for other lakes, and similarly consistent trends of increasing water column stability (+ 0.08 kg m−3 decade−1). In contrast, however, deepwater temperature trends showed little change on average (+ 0.06 °C decade−1), but had high variability across lakes, with trends in individual lakes ranging from − 0.68 °C decade−1 to + 0.65 °C decade−1. The variability in deepwater temperature trends was not explained by trends in either surface water temperatures or thermal stability within lakes, and only 8.4% was explained by lake thermal region or local lake characteristics in a random forest analysis. These findings suggest that external drivers beyond our tested lake characteristics are important in explaining long-term trends in thermal structure, such as local to regional climate patterns or additional external anthropogenic influences.


2016 ◽  
Vol 9 (9) ◽  
pp. 4355-4373 ◽  
Author(s):  
Swagata Payra ◽  
Philippe Ricaud ◽  
Rachid Abida ◽  
Laaziz El Amraoui ◽  
Jean-Luc Attié ◽  
...  

Abstract. The present analysis deals with one of the most debated aspects of the studies on the upper troposphere/lower stratosphere (UTLS), namely the budget of water vapour (H2O) at the tropical tropopause. Within the French project “Multiscale water budget in the upper troposphere and lower stratosphere in the TROpics” (TRO-pico), a global-scale analysis has been set up based on space-borne observations, models and assimilation techniques. The MOCAGE-VALENTINA assimilation tool has been used to assimilate the Aura Microwave Limb Sounder (MLS) version 3.3 H2O measurements within the 316–5 hPa range from August 2011 to March 2013 with an assimilation window of 1 h. Diagnostics based on observations minus analysis and forecast are developed to assess the quality of the assimilated H2O fields. Comparison with an independent source of H2O measurements in the UTLS based on the space-borne Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) observations and with meteorological ARPEGE analyses is also shown. Sensitivity studies of the analysed fields have been performed by (1) considering periods when no MLS measurements are available and (2) using H2O data from another MLS version (4.2). The studies have been performed within three different spaces in time and space coincidences with MLS (hereafter referred to as MLS space) and MIPAS (MIPAS space) observations and with the model (model space) outputs and at three different levels: 121 hPa (upper troposphere), 100 hPa (tropopause) and 68 hPa (lower stratosphere) in January and February 2012. In the MLS space, the analyses behave consistently with the MLS observations from the upper troposphere to the lower stratosphere. In the model space, the analyses are wetter than the reference atmosphere as represented by ARPEGE and MLS in the upper troposphere (121 hPa) and around the tropopause (100 hPa), but are consistent with MLS and MIPAS in the lower stratosphere (68 hPa). In the MIPAS space, the sensitivity and the vertical resolution of the MIPAS data set at 121 and 100 hPa prevent assessment of the behaviour of the analyses at 121 and 100 hPa, particularly over intense convective areas as the South American, the African and the Maritime continents but, in the lower stratosphere (68 hPa), the analyses are very consistent with MIPAS. Sensitivity studies show the improvement on the H2O analyses in the tropical UTLS when assimilating space-borne measurements of better quality, particularly over the convective areas.


2020 ◽  
Author(s):  
Konstantinos Doulgeris ◽  
David Brus

&lt;p&gt;Clouds and their interaction with aerosols are considered one of the major factors that are connected with uncertainties in predictions of climate change and are highly associated with earth radiative balance. Semi long term in-situ measurements of Arctic low-level clouds have been conducted during last 10 year (2009 - 2019) autumns at Sammaltunturi station (67&amp;#9702;58&amp;#180;N, 24&amp;#9702;07&amp;#180;E, and 560 m a.s.l.), the part of Pallas Atmosphere - Ecosystem Supersite and Global Atmosphere Watch (GAW) programme. During these years a unique data set of continuous and detailed ground-based cloud observations over the sub-Arctic area was obtained. The in-situ cloud measurements were made using two cloud probes that were installed on the roof of the station: the Cloud, Aerosol and Precipitation Spectrometer probe (CAPS) and the Forward Scattering Spectrometer Probe&lt;strong&gt; (&lt;/strong&gt;FSSP&lt;strong&gt;)&lt;/strong&gt;, both made by droplet measurement technologies (DMT, Longmont, CO, USA). CAPS in&amp;#173;cludes three instruments: the Cloud Imaging Probe (CIP, 12.5 &amp;#956;m-1.55 mm), the Cloud and Aerosol Spectrometer (CAS-DPOL, 0.51-50 &amp;#956;m) with depolarization feature and the Hotwire Liquid Water Content Sensor (Hotwire LWC, 0 - 3 g/m&lt;sup&gt;3&lt;/sup&gt;). Vaisala FD12P weather sensor was used to measure all the meteorological data. The essential cloud microphysical parameters we investigated during this work were the size distributions, the total number concentrations, the effective radius of cloud droplets and the cloud liquid water content. The year to year comparison and correlations among semi long term in situ cloud measurements and meteorology are presented.&lt;/p&gt;


Sign in / Sign up

Export Citation Format

Share Document