scholarly journals Formation of secondary organic aerosol coating on black carbon particles near vehicular emissions

Author(s):  
Alex K. Y. Lee ◽  
Chia-Li Chen ◽  
Jun Liu ◽  
Derek J. Price ◽  
Raghu Betha ◽  
...  

Abstract. Black carbon (BC) emitted from incomplete combustion can result in significant impacts on air quality and climate. Understanding the mixing state of ambient BC and the chemical characteristics of its associated coatings are particularly important to evaluate BC fate and environmental impacts. In this study, we investigate the formation of organic coatings on BC particles in an urban environment (Fontana, California) under hot and dry conditions using a Soot-Particle Aerosol Mass Spectrometer (SP-AMS). The SP-AMS was operated in a configuration that can detect refractory BC (rBC) particles and their coatings exclusively. Using the −log(NOx/NOy) ratio as a proxy for photochemical age of air masses, substantial formation of secondary organic aerosol (SOA) coatings on rBC particles was observed due to active photochemistry in the afternoon, whereas primary organic aerosol (POA) components were strongly associated with rBC from fresh vehicular missions in the morning rush hours. There is also evidence that cooking related organic aerosols were externally mixed from rBC. Positive matrix factorization and elemental analysis illustrate that most of the observed SOA coatings were freshly formed, providing an opportunity to examine SOA coating formation on rBC near vehicular emissions. Approximately 7–20 wt % of secondary organic and inorganic species were estimated to be internally mixed with rBC on average, implying that rBC is unlikely the major condensation sinks of SOA in this study. Diurnal cycles of oxygenated organic aerosol (OOA) observed by a co-located standard high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-MS) correlated well with that of SOA coatings on rBC, but their mass spectral characteristics were different from each other. Our results suggest that at least a portion of SOA materials condensed on rBC surface were chemically different from OOA particles that were externally mixed with rBC, although they are both generated from local photochemistry.

2017 ◽  
Vol 17 (24) ◽  
pp. 15055-15067 ◽  
Author(s):  
Alex K. Y. Lee ◽  
Chia-Li Chen ◽  
Jun Liu ◽  
Derek J. Price ◽  
Raghu Betha ◽  
...  

Abstract. Black carbon (BC) emitted from incomplete combustion can result in significant impacts on air quality and climate. Understanding the mixing state of ambient BC and the chemical characteristics of its associated coatings is particularly important to evaluate BC fate and environmental impacts. In this study, we investigate the formation of organic coatings on BC particles in an urban environment (Fontana, California) under hot and dry conditions using a soot-particle aerosol mass spectrometer (SP-AMS). The SP-AMS was operated in a configuration that can exclusively detect refractory BC (rBC) particles and their coatings. Using the −log(NOx ∕ NOy) ratio as a proxy for photochemical age of air masses, substantial formation of secondary organic aerosol (SOA) coatings on rBC particles was observed due to active photochemistry in the afternoon, whereas primary organic aerosol (POA) components were strongly associated with rBC from fresh vehicular emissions in the morning rush hours. There is also evidence that cooking-related organic aerosols were externally mixed from rBC. Positive matrix factorization and elemental analysis illustrate that most of the observed SOA coatings were freshly formed, providing an opportunity to examine SOA coating formation on rBCs near vehicular emissions. Approximately 7–20 wt % of secondary organic and inorganic species were estimated to be internally mixed with rBC on average, implying that rBC is unlikely the major condensation sink of SOA in this study. Comparison of our results to a co-located standard high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) measurement suggests that at least a portion of SOA materials condensed on rBC surfaces were chemically different from oxygenated organic aerosol (OOA) particles that were externally mixed with rBC, although they could both be generated from local photochemistry.


2008 ◽  
Vol 8 (4) ◽  
pp. 16585-16608 ◽  
Author(s):  
M. E. Erupe ◽  
D. J. Price ◽  
P. J. Silva ◽  
Q. G. J. Malloy ◽  
L. Qi ◽  
...  

Abstract. Secondary organic aerosol formation from the reaction of tertiary amines with nitrate radical was investigated in an indoor environmental chamber. Particle chemistry was monitored using a high resolution aerosol mass spectrometer while gas-phase species were detected using a proton transfer reaction mass spectrometer. Trimethylamine, triethylamine and tributylamine were studied. Results indicate that tributylamine forms the most aerosol mass followed by trimethylamine and triethylamine respectively. Spectra from the aerosol mass spectrometer indicate the formation of complex non-salt aerosol products. We propose a reaction mechanism that proceeds via abstraction of a proton by nitrate radical followed by RO2 chemistry. Rearrangement of the aminyl alkoxy radical through hydrogen shift leads to the formation of hydroxylated amides, which explain most of the higher mass ions in the mass spectra. These experiments show that oxidation of tertiary amines by nitrate radical may be an important night-time source of secondary organic aerosol.


2015 ◽  
Vol 15 (20) ◽  
pp. 11807-11833 ◽  
Author(s):  
W. W. Hu ◽  
P. Campuzano-Jost ◽  
B. B. Palm ◽  
D. A. Day ◽  
A. M. Ortega ◽  
...  

Abstract. Substantial amounts of secondary organic aerosol (SOA) can be formed from isoprene epoxydiols (IEPOX), which are oxidation products of isoprene mainly under low-NO conditions. Total IEPOX-SOA, which may include SOA formed from other parallel isoprene oxidation pathways, was quantified by applying positive matrix factorization (PMF) to aerosol mass spectrometer (AMS) measurements. The IEPOX-SOA fractions of organic aerosol (OA) in multiple field studies across several continents are summarized here and show consistent patterns with the concentration of gas-phase IEPOX simulated by the GEOS-Chem chemical transport model. During the Southern Oxidant and Aerosol Study (SOAS), 78 % of PMF-resolved IEPOX-SOA is accounted by the measured IEPOX-SOA molecular tracers (2-methyltetrols, C5-Triols, and IEPOX-derived organosulfate and its dimers), making it the highest level of molecular identification of an ambient SOA component to our knowledge. An enhanced signal at C5H6O+ (m/z 82) is found in PMF-resolved IEPOX-SOA spectra. To investigate the suitability of this ion as a tracer for IEPOX-SOA, we examine fC5H6O (fC5H6O= C5H6O+/OA) across multiple field, chamber, and source data sets. A background of ~ 1.7 ± 0.1 ‰ (‰ = parts per thousand) is observed in studies strongly influenced by urban, biomass-burning, and other anthropogenic primary organic aerosol (POA). Higher background values of 3.1 ± 0.6 ‰ are found in studies strongly influenced by monoterpene emissions. The average laboratory monoterpene SOA value (5.5 ± 2.0 ‰) is 4 times lower than the average for IEPOX-SOA (22 ± 7 ‰), which leaves some room to separate both contributions to OA. Locations strongly influenced by isoprene emissions under low-NO levels had higher fC5H6O (~ 6.5 ± 2.2 ‰ on average) than other sites, consistent with the expected IEPOX-SOA formation in those studies. fC5H6O in IEPOX-SOA is always elevated (12–40 ‰) but varies substantially between locations, which is shown to reflect large variations in its detailed molecular composition. The low fC5H6O (< 3 ‰) reported in non-IEPOX-derived isoprene-SOA from chamber studies indicates that this tracer ion is specifically enhanced from IEPOX-SOA, and is not a tracer for all SOA from isoprene. We introduce a graphical diagnostic to study the presence and aging of IEPOX-SOA as a triangle plot of fCO2 vs. fC5H6O. Finally, we develop a simplified method to estimate ambient IEPOX-SOA mass concentrations, which is shown to perform well compared to the full PMF method. The uncertainty of the tracer method is up to a factor of ~ 2, if the fC5H6O of the local IEPOX-SOA is not available. When only unit mass-resolution data are available, as with the aerosol chemical speciation monitor (ACSM), all methods may perform less well because of increased interferences from other ions at m/z 82. This study clarifies the strengths and limitations of the different AMS methods for detection of IEPOX-SOA and will enable improved characterization of this OA component.


2019 ◽  
Vol 46 (14) ◽  
pp. 8474-8483 ◽  
Author(s):  
Yao He ◽  
Yele Sun ◽  
Qingqing Wang ◽  
Wei Zhou ◽  
Weiqi Xu ◽  
...  

2012 ◽  
Vol 12 (18) ◽  
pp. 8537-8551 ◽  
Author(s):  
Y. L. Sun ◽  
Q. Zhang ◽  
J. J. Schwab ◽  
T. Yang ◽  
N. L. Ng ◽  
...  

Abstract. Positive matrix factorization (PMF) was applied to the merged high resolution mass spectra of organic and inorganic aerosols from aerosol mass spectrometer (AMS) measurements to investigate the sources and evolution processes of submicron aerosols in New York City in summer 2009. This new approach is able to study the distribution of organic and inorganic species in different types of aerosols, the acidity of organic aerosol (OA) factors, and the fragment ion patterns related to photochemical processing. In this study, PMF analysis of the unified AMS spectral matrix resolved 8 factors. The hydrocarbon-like OA (HOA) and cooking OA (COA) factors contain negligible amounts of inorganic species. The two factors that are primarily ammonium sulfate (SO4-OA) and ammonium nitrate (NO3-OA), respectively, are overall neutralized. Among all OA factors the organic fraction of SO4-OA shows the highest degree of oxidation (O/C = 0.69). Two semi-volatile oxygenated OA (OOA) factors, i.e., a less oxidized (LO-OOA) and a more oxidized (MO-OOA), were also identified. MO-OOA represents local photochemical products with a diurnal profile exhibiting a pronounced noon peak, consistent with those of formaldehyde (HCHO) and Ox(= O3 + NO2). The NO+/NO2+ ion ratio in MO-OOA is much higher than that in NO3-OA and in pure ammonium nitrate, indicating the formation of organic nitrates. The nitrogen-enriched OA (NOA) factor contains ~25% of acidic inorganic salts, suggesting the formation of secondary OA via acid-base reactions of amines. The size distributions of OA factors derived from the size-resolved mass spectra show distinct diurnal evolving behaviors but overall a progressing evolution from smaller to larger particle mode as the oxidation degree of OA increases. Our results demonstrate that PMF analysis of the unified aerosol mass spectral matrix which contains both inorganic and organic aerosol signals may enable the deconvolution of more OA factors and gain more insights into the sources, processes, and chemical characteristics of OA in the atmosphere.


2013 ◽  
Vol 13 (12) ◽  
pp. 6101-6116 ◽  
Author(s):  
E. Z. Nordin ◽  
A. C. Eriksson ◽  
P. Roldin ◽  
P. T. Nilsson ◽  
J. E. Carlsson ◽  
...  

Abstract. Gasoline vehicles have recently been pointed out as potentially the main source of anthropogenic secondary organic aerosol (SOA) in megacities. However, there is a lack of laboratory studies to systematically investigate SOA formation in real-world exhaust. In this study, SOA formation from pure aromatic precursors, idling and cold start gasoline exhaust from three passenger vehicles (EURO2–EURO4) were investigated with photo-oxidation experiments in a 6 m3 smog chamber. The experiments were carried out down to atmospherically relevant organic aerosol mass concentrations. The characterization instruments included a high-resolution aerosol mass spectrometer and a proton transfer mass spectrometer. It was found that gasoline exhaust readily forms SOA with a signature aerosol mass spectrum similar to the oxidized organic aerosol that commonly dominates the organic aerosol mass spectra downwind of urban areas. After a cumulative OH exposure of ~5 × 106 cm−3 h, the formed SOA was 1–2 orders of magnitude higher than the primary OA emissions. The SOA mass spectrum from a relevant mixture of traditional light aromatic precursors gave f43 (mass fraction at m/z = 43), approximately two times higher than to the gasoline SOA. However O : C and H : C ratios were similar for the two cases. Classical C6–C9 light aromatic precursors were responsible for up to 60% of the formed SOA, which is significantly higher than for diesel exhaust. Important candidates for additional precursors are higher-order aromatic compounds such as C10 and C11 light aromatics, naphthalene and methyl-naphthalenes. We conclude that approaches using only light aromatic precursors give an incomplete picture of the magnitude of SOA formation and the SOA composition from gasoline exhaust.


2013 ◽  
Vol 13 (3) ◽  
pp. 8537-8583 ◽  
Author(s):  
M. Crippa ◽  
F. Canonaco ◽  
J. G. Slowik ◽  
I. El Haddad ◽  
P. F. DeCarlo ◽  
...  

Abstract. Secondary organic aerosol (SOA), a predominant fraction of particulate organic mass (OA), remains poorly constrained. Its formation involves several unknown precursors, formation and evolution pathways and multiple natural and anthropogenic sources. Here a combined gas-particle phase source apportionment is applied to wintertime and summertime data collected in the megacity of Paris in order to investigate SOA origin during both seasons. This was possible by combining the information provided by an aerosol mass spectrometer (AMS) and a proton transfer reaction mass spectrometer (PTR-MS). A better constrained apportionment of primary OA (POA) sources is also achieved using this methodology, making use of gas-phase tracers. These tracers allowed distinguishing between biogenic and continental/anthropogenic sources of SOA. We found that continental SOA was dominant during both seasons (24–50% of total OA), while contributions from photochemistry-driven SOA (9% of total OA) and marine emissions (13% of total OA) were also observed during summertime. A semi-volatile nighttime component was also identified (up to 18% of total OA during wintertime). This approach was successfully applied here and implemented in a new source apportionment toolkit.


2020 ◽  
Vol 20 (14) ◽  
pp. 8421-8440
Author(s):  
Yunle Chen ◽  
Masayuki Takeuchi ◽  
Theodora Nah ◽  
Lu Xu ◽  
Manjula R. Canagaratna ◽  
...  

Abstract. The formation and evolution of secondary organic aerosol (SOA) were investigated at Yorkville, GA, in late summer (mid-August to mid-October 2016). The organic aerosol (OA) composition was measured using two online mass spectrometry instruments, the high-resolution time-of-flight aerosol mass spectrometer (AMS) and the Filter Inlet for Gases and AEROsols coupled to a high-resolution time-of-flight iodide-adduct chemical ionization mass spectrometer (FIGAERO-CIMS). Through analysis of speciated organics data from FIGAERO-CIMS and factorization analysis of data obtained from both instruments, we observed notable SOA formation from isoprene and monoterpenes during both day and night. Specifically, in addition to isoprene epoxydiol (IEPOX) uptake, we identified isoprene SOA formation from non-IEPOX pathways and isoprene organic nitrate formation via photooxidation in the presence of NOx and nitrate radical oxidation. Monoterpenes were found to be the most important SOA precursors at night. We observed significant contributions from highly oxidized acid-like compounds to the aged OA factor from FIGAERO-CIMS. Taken together, our results showed that FIGAERO-CIMS measurements are highly complementary to the extensively used AMS factorization analysis, and together they provide more comprehensive insights into OA sources and composition.


2014 ◽  
Vol 14 (22) ◽  
pp. 12109-12132 ◽  
Author(s):  
S. Decesari ◽  
J. Allan ◽  
C. Plass-Duelmer ◽  
B. J. Williams ◽  
M. Paglione ◽  
...  

Abstract. The use of co-located multiple spectroscopic techniques can provide detailed information on the atmospheric processes regulating aerosol chemical composition and mixing state. So far, field campaigns heavily equipped with aerosol mass spectrometers have been carried out mainly in large conurbations and in areas directly affected by their outflow, whereas lesser efforts have been dedicated to continental areas characterised by a less dense urbanisation. We present here the results obtained at a background site in the Po Valley, Italy, in summer 2009. For the first time in Europe, six state-of-the-art spectrometric techniques were used in parallel: aerosol time-of-flight mass spectrometer (ATOFMS), two aerosol mass spectrometers (high-resolution time-of-flight aerosol mass spectrometer – HR-ToF-AMS and soot particle aerosol mass spectrometer – SP-AMS), thermal desorption aerosol gas chromatography (TAG), chemical ionisation mass spectrometry (CIMS) and (offline) proton nuclear magnetic resonance (1H-NMR) spectroscopy. The results indicate that, under high-pressure conditions, atmospheric stratification at night and early morning hours led to the accumulation of aerosols produced by anthropogenic sources distributed over the Po Valley plain. Such aerosols include primary components such as black carbon (BC), secondary semivolatile compounds such as ammonium nitrate and amines and a class of monocarboxylic acids which correspond to the AMS cooking organic aerosol (COA) already identified in urban areas. In daytime, the entrainment of aged air masses in the mixing layer is responsible for the accumulation of low-volatility oxygenated organic aerosol (LV-OOA) and also for the recycling of non-volatile primary species such as black carbon. According to organic aerosol source apportionment, anthropogenic aerosols accumulating in the lower layers overnight accounted for 38% of organic aerosol mass on average, another 21% was accounted for by aerosols recirculated in residual layers but still originating in northern Italy, while a substantial fraction (41%) was due to the most aged aerosols imported from transalpine areas. The different meteorological regimes also affected the BC mixing state: in periods of enhanced stagnation and recirculation of pollutants, the number fraction of the BC-containing particles determined by ATOFMS was 75% of the total, while in the days of enhanced ventilation of the planetary boundary layer (PBL), such fraction was significantly lower (50%) because of the relative greater influence of non-BC-containing aerosol local sources in the Po Valley. Overall, a full internal mixing between BC and the non-refractory aerosol chemical components was not observed during the experiment in this environment.


Sign in / Sign up

Export Citation Format

Share Document