scholarly journals Supplementary material to "Quantifying snow-darkening and atmospheric radiative effects of black carbon and dust on the South-Asian Monsoon and hydrological cycle: Experiments using variable resolution CESM "

Author(s):  
Stefan Rahimi ◽  
Xiaohong Liu ◽  
Chenglai Wu ◽  
William K. Lau ◽  
Hunter Brown ◽  
...  
2019 ◽  
Author(s):  
Stefan Rahimi ◽  
Xiaohong Liu ◽  
Chenglai Wu ◽  
William K. Lau ◽  
Hunter Brown ◽  
...  

Abstract. Black carbon (BC) and dust impart significant effects on the south-Asian monsoon (SAM), which is responsible for ~80 % of the region’s annual precipitation. This study implements a variable-resolution (VR) version of Community Earth System Model (CESM) to quantify the impacts of absorbing BC and dust on the SAM. This study focuses on the snow darkening effect (SDE), as well as how these aerosols interact with incoming and outgoing radiation to facilitate an atmospheric response (i.e., aerosol radiation interactions (ARI)). By running sensitivity experiments, the individual effects of SDE and ARI are quantified, and a theoretical framework is applied to assess these aerosols’ impacts on the SAM. It is found that ARI of absorbing aerosols warm the atmospheric column in a belt coincident with the May-June averaged location of the subtropical jet, bringing forth anomalous upper-tropospheric (lower-tropospheric) anticyclogenesis (cyclogenesis) and divergence (convergence). This anomalous arrangement in the mass fields brings forth enhanced rising vertical motion across south Asia and a stronger westerly low-level jet, the latter of which furnishes the Indian subcontinent with enhanced Arabian Gulf moisture. This leads to precipitation increases of +2 mm d−1 or more across much of northern India from May through August, with larger anomalies in the western Indian mountains and southern TP mountain ranges due to orographic and anabatic enhancement. Across the Tibetan Plateau foothills, SDE by BC aerosol drives large precipitation anomalies of >6 mm d−1, comparable to ARI of absorbing aerosols from April through August. Runoff changes accompany precipitation and Tibetan Plateau snow changes, which have consequences for south-Asian water resources.


2019 ◽  
Vol 19 (18) ◽  
pp. 12025-12049 ◽  
Author(s):  
Stefan Rahimi ◽  
Xiaohong Liu ◽  
Chenglai Wu ◽  
William K. Lau ◽  
Hunter Brown ◽  
...  

Abstract. Black carbon (BC) and dust impart significant effects on the South Asian monsoon (SAM), which is responsible for ∼80  % of the region's annual precipitation. This study implements a variable-resolution (VR) version of the Community Earth System Model (CESM) to quantify two radiative effects of absorbing BC and dust on the SAM. Specifically, this study focuses on the snow darkening effect (SDE), as well as how these aerosols interact with incoming and outgoing radiation to facilitate an atmospheric response (i.e., aerosol–radiation interactions, ARIs). By running sensitivity experiments, the individual effects of SDE and ARI are quantified, and a theoretical framework is applied to assess these aerosols' impacts on the SAM. It is found that ARIs of absorbing aerosols warm the atmospheric column in a belt coincident with the May–June averaged location of the subtropical jet, bringing forth anomalous upper-tropospheric (lower-tropospheric) anticyclogenesis (cyclogenesis) and divergence (convergence). This anomalous arrangement in the mass fields brings forth enhanced rising vertical motion across South Asia and a stronger westerly low-level jet, the latter of which furnishes the Indian subcontinent with enhanced Arabian Gulf moisture. Precipitation increases of 2 mm d−1 or more (a 60 % increase in June) result across much of northern India from May through August, with larger anomalies (+5 to +10 mm d−1) in the western Indian mountains and southern Tibetan Plateau (TP) mountain ranges due to orographic and anabatic enhancement. Across the Tibetan Plateau foothills, SDE by BC aerosols drives large precipitation anomalies of > 6 mm d−1 (a 21 %–26 % increase in May and June), comparable to ARI of absorbing aerosols from April through August. Runoff changes accompany BC SDE-induced snow changes across Tibet, while runoff changes across India result predominantly from dust ARI. Finally, there are large differences in the simulated SDE between the VR and traditional 1∘ simulations, the latter of which simulates a much stronger SDE and more effectively modifies the regional circulation.


2013 ◽  
Vol 41 (1) ◽  
pp. 173-194 ◽  
Author(s):  
T. P Sabin ◽  
R. Krishnan ◽  
Josefine Ghattas ◽  
Sebastien Denvil ◽  
Jean-Louis Dufresne ◽  
...  

2014 ◽  
Vol 15 (1) ◽  
pp. 229-242 ◽  
Author(s):  
Marco Lomazzi ◽  
Dara Entekhabi ◽  
Joaquim G. Pinto ◽  
Giorgio Roth ◽  
Roberto Rudari

Abstract The summer monsoon season is an important hydrometeorological feature of the Indian subcontinent and it has significant socioeconomic impacts. This study is aimed at understanding the processes associated with the occurrence of catastrophic flood events. The study has two novel features that add to the existing body of knowledge about the South Asian monsoon: 1) it combines traditional hydrometeorological observations (rain gauge measurements) with unconventional data (media and state historical records of reported flooding) to produce value-added century-long time series of potential flood events and 2) it identifies the larger regional synoptic conditions leading to days with flood potential in the time series. The promise of mining unconventional data to extend hydrometeorological records is demonstrated in this study. The synoptic evolution of flooding events in the western-central coast of India and the densely populated Mumbai area are shown to correspond to active monsoon periods with embedded low pressure centers and have far-upstream influences from the western edge of the Indian Ocean basin. The coastal processes along the Arabian Peninsula where the currents interact with the continental shelf are found to be key features of extremes during the South Asian monsoon.


Sign in / Sign up

Export Citation Format

Share Document