scholarly journals Technical Note: Frenkel Halsey and Hill analysis of water on clay minerals: Toward closure between cloud condensation nuclei activity and water adsorption

2019 ◽  
Author(s):  
Courtney D. Hatch ◽  
Paul R. Tumminello ◽  
Megan A. Cassingham ◽  
Ann L. Greenaway ◽  
Rebecca Meredith ◽  
...  

Abstract. Insoluble atmospheric aerosol, such as mineral dust, has been identified as an important contributor to the cloud droplet number concentration and indirect climate effect. However, empirically-derived Frenkel-Halsey-Hill (FHH) water adsorption parameters remain the largest source of uncertainty in assessing the effect of insoluble aerosol on climate using the FHH activation theory (FHH-AT). Furthermore, previously reported FHH water adsorption parameters for illite and montmorillonite determined from water adsorption measurements below 100 % RH do not satisfactorily agree with values determined from FHH-AT analysis of experimental cloud condensation nuclei (CCN) measurements under supersaturated conditions. The work reported here uses previously reported experimental water adsorption measurements for illite and montmorillonite clays (Hatch et al., 2012; Hatch et al., 2014) to show that improved analysis methods that account for the surface microstructure are necessary to obtain better agreement of FHH parameters between water adsorption and experimental CCN-derived FHH parameters.

2019 ◽  
Vol 19 (21) ◽  
pp. 13581-13589 ◽  
Author(s):  
Courtney D. Hatch ◽  
Paul R. Tumminello ◽  
Megan A. Cassingham ◽  
Ann L. Greenaway ◽  
Rebecca Meredith ◽  
...  

Abstract. Insoluble atmospheric aerosol, such as mineral dust, has been identified as an important contributor to the cloud droplet number concentration and indirect climate effect. However, empirically derived Frenkel–Halsey–Hill (FHH) water adsorption parameters remain the largest source of uncertainty in assessing the effect of insoluble aerosol on climate using the FHH activation theory (FHH-AT). Furthermore, previously reported FHH water adsorption parameters for illite and montmorillonite determined from water adsorption measurements below 100 % RH do not satisfactorily agree with values determined from FHH-AT analysis of experimental cloud condensation nuclei (CCN) measurements under supersaturated conditions. The work reported here uses previously reported experimental water adsorption measurements for illite and montmorillonite clays (Hatch et al., 2012, 2014) to show that improved analysis methods that account for the surface microstructure are necessary to obtain better agreement of FHH parameters between water adsorption and experimental CCN-derived FHH parameters.


2011 ◽  
Vol 11 (9) ◽  
pp. 4411-4423 ◽  
Author(s):  
M. Bangert ◽  
C. Kottmeier ◽  
B. Vogel ◽  
H. Vogel

Abstract. We have extended the coupled mesoscale atmosphere and chemistry model COSMO-ART to account for the transformation of aerosol particles into cloud condensation nuclei and to quantify their interaction with warm cloud microphysics on the regional scale. The new model system aims to fill the gap between cloud resolving models and global scale models. It represents the very complex microscale aerosol and cloud physics as detailed as possible, whereas the continental domain size and efficient codes will allow for both studying weather and regional climate. The model system is applied in a first extended case study for Europe for a cloudy five day period in August 2005. The model results show that the mean cloud droplet number concentration of clouds is correlated with the structure of the terrain, and we present a terrain slope parameter TS to classify this dependency. We propose to use this relationship to parameterize the probability density function, PDF, of subgrid-scale cloud updraft velocity in the activation parameterizations of climate models. The simulations show that the presence of cloud condensation nuclei (CCN) and clouds are closely related spatially. We find high aerosol and CCN number concentrations in the vicinity of clouds at high altitudes. The nucleation of secondary particles is enhanced above the clouds. This is caused by an efficient formation of gaseous aerosol precursors above the cloud due to more available radiation, transport of gases in clean air above the cloud, and humid conditions. Therefore the treatment of complex photochemistry is crucial in atmospheric models to simulate the distribution of CCN. The mean cloud droplet number concentration and droplet diameter showed a close link to the change in the aerosol. To quantify the net impact of an aerosol change on the precipitation we calculated the precipitation susceptibility β for the whole model domain over a period of two days with an hourly resolution. The distribution function of β is slightly skewed to positive values and has a mean of 0.23. Clouds with a liquid water path LWP of approximately 0.85 kg m−2 are on average most susceptible to aerosol changes in our simulations with an absolute value of β of 1. The average β for LWP between 0.5 kg m−2 and 1 kg m−2 is approximately 0.4.


2017 ◽  
Author(s):  
Daniel T. McCoy ◽  
Paul R. Field ◽  
Anja Schmidt ◽  
Daniel P. Grosvenor ◽  
Frida A.-M. Bender ◽  
...  

Abstract. Aerosol-cloud interactions are a major source of uncertainty in predicting 21st century climate change. Using high-resolution, convection-permitting global simulations we predict that increased cloud condensation nuclei (CCN) interacting with midlatitude cyclones will increase their cloud droplet number concentration (CDNC), liquid water (CLWP), and albedo. For the first time this effect is shown with 13 years of satellite observations. Causality between enhanced CCN and enhanced cyclone liquid content is supported by the 2014 eruption of Holuhraun. The change in midlatitude cyclone albedo due to enhanced CCN in a surrogate climate model is around 70 % of the change in a high-resolution convection-permitting model, indicating that climate models may underestimate this indirect effect.


2011 ◽  
Vol 11 (18) ◽  
pp. 9485-9501 ◽  
Author(s):  
J. V. Martins ◽  
A. Marshak ◽  
L. A. Remer ◽  
D. Rosenfeld ◽  
Y. J. Kaufman ◽  
...  

Abstract. Cloud-aerosol interaction is a key issue in the climate system, affecting the water cycle, the weather, and the total energy balance including the spatial and temporal distribution of latent heat release. Information on the vertical distribution of cloud droplet microphysics and thermodynamic phase as a function of temperature or height, can be correlated with details of the aerosol field to provide insight on how these particles are affecting cloud properties and their consequences to cloud lifetime, precipitation, water cycle, and general energy balance. Unfortunately, today's experimental methods still lack the observational tools that can characterize the true evolution of the cloud microphysical, spatial and temporal structure in the cloud droplet scale, and then link these characteristics to environmental factors and properties of the cloud condensation nuclei. Here we propose and demonstrate a new experimental approach (the cloud scanner instrument) that provides the microphysical information missed in current experiments and remote sensing options. Cloud scanner measurements can be performed from aircraft, ground, or satellite by scanning the side of the clouds from the base to the top, providing us with the unique opportunity of obtaining snapshots of the cloud droplet microphysical and thermodynamic states as a function of height and brightness temperature in clouds at several development stages. The brightness temperature profile of the cloud side can be directly associated with the thermodynamic phase of the droplets to provide information on the glaciation temperature as a function of different ambient conditions, aerosol concentration, and type. An aircraft prototype of the cloud scanner was built and flew in a field campaign in Brazil. The CLAIM-3D (3-Dimensional Cloud Aerosol Interaction Mission) satellite concept proposed here combines several techniques to simultaneously measure the vertical profile of cloud microphysics, thermodynamic phase, brightness temperature, and aerosol amount and type in the neighborhood of the clouds. The wide wavelength range, and the use of multi-angle polarization measurements proposed for this mission allow us to estimate the availability and characteristics of aerosol particles acting as cloud condensation nuclei, and their effects on the cloud microphysical structure. These results can provide unprecedented details on the response of cloud droplet microphysics to natural and anthropogenic aerosols in the size scale where the interaction really happens.


2020 ◽  
Author(s):  
Tim Bates ◽  
Patricia Quinn

<p>The fair-weather cumulus clouds, that cover much of the low-latitude oceans, affect the radiation balance of the planet by reflecting incoming solar radiation and absorbing outgoing longwave radiation.  These clouds also drive atmospheric circulation by mixing the lower atmosphere in a process called shallow convection.  This mixing, in turn, affects sea surface temperature and salinity by moderating the air-sea exchange of energy and moisture.  Marine boundary layer (MBL) atmospheric aerosols play a role in the processes described above by scattering and absorbing solar radiation and by serving as cloud condensation nuclei (CCN) thereby influencing cloud droplet concentrations and size; the extent, lifetime, and albedo of clouds; and the frequency and intensity of precipitation. Quantifying the role of aerosols over the Northwest Tropical Atlantic is critical to advance understanding of shallow convection and air-sea interactions.</p><p>MBL aerosol properties were measured aboard the RV Ronald H. Brown during the EUREC4A and ATOMIC field studies in January/February 2020.  Aerosols encountered during the study include background sulfate/sea spray particles and African dust/biomass burning particles.  Aerosol physical, chemical, optical and cloud condensation nuclei properties will be presented and their interaction with local and regional circulation.</p>


2013 ◽  
Vol 13 (20) ◽  
pp. 10285-10301 ◽  
Author(s):  
M. Paramonov ◽  
P. P. Aalto ◽  
A. Asmi ◽  
N. Prisle ◽  
V.-M. Kerminen ◽  
...  

Abstract. Ambient aerosol, CCN (cloud condensation nuclei) and hygroscopic properties were measured with a size-segregated CCNC (cloud condensation nuclei counter) in a boreal environment of southern Finland at the SMEAR (Station for Measuring Ecosystem-Atmosphere Relations) II station. The instrumental setup operated at five levels of supersaturation S covering a range from 0.1–1% and measured particles with a size range of 20–300 nm; a total of 29 non-consecutive months of data are presented. The median critical diameter Dc ranged from 150 nm at S of 0.1% to 46 nm at S of 1.0%. The median aerosol hygroscopicity parameter κ ranged from 0.41 at S of 0.1% to 0.14 at S of 1.0%, indicating that ambient aerosol in Hyytiälä is less hygroscopic than the global continental or European continental averages. It is, however, more hygroscopic than the ambient aerosol in an Amazon rainforest, a European high Alpine site or a forested mountainous site. A fairly low hygroscopicity in Hyytiälä is likely a result of a large organic fraction present in the aerosol mass comparative to other locations within Europe. A considerable difference in particle hygroscopicity was found between particles smaller and larger than ~100 nm in diameter, possibly pointing out to the effect of cloud processing increasing κ of particles > 100 nm in diameter. The hygroscopicity of the smaller, ~50 nm particles did not change seasonally, whereas particles with a diameter of ~150 nm showed a decreased hygroscopicity in the summer, likely resulting from the increased VOC emissions of the surrounding boreal forest and secondary organic aerosol (SOA) formation. For the most part, no diurnal patterns of aerosol hygroscopic properties were found. Exceptions to this were the weak diurnal patterns of small, ~50 nm particles in the spring and summer, when a peak in hygroscopicity around noon was observed. No difference in CCN activation and hygroscopic properties was found on days with or without atmospheric new particle formation. During all seasons, except summer, a CCN-inactive fraction was found to be present, rendering the aerosol of 75–300 nm in diameter as internally mixed in the summer and not internally mixed for the rest of the year.


Sign in / Sign up

Export Citation Format

Share Document