boreal environment
Recently Published Documents


TOTAL DOCUMENTS

45
(FIVE YEARS 12)

H-INDEX

13
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Zoé Brasseur ◽  
Dimitri Castarède ◽  
Erik S. Thomson ◽  
Michael P. Adams ◽  
Saskia Drossaart van Dusseldorp ◽  
...  

Abstract. The formation of ice particles in Earth’s atmosphere strongly influences the dynamics and optical properties of clouds and their impacts on the climate system. Ice formation in clouds is often triggered heterogeneously by ice nucleating particles (INPs) that represent a very low number of particles in the atmosphere. To date, many sources of INPs, such as mineral and soil dust, have been investigated and identified in the lower latitudes. Although less is known about the sources of ice nucleation at higher latitudes, efforts have been made to identify the sources of INPs in the Arctic and boreal environments. In this study, we investigate the INP emission potential from high latitude boreal forests. We introduce the HyICE-2018 measurement campaign conducted in the boreal forest of Hyytiälä, Finland between February and June 2018. The campaign utilized the infrastructure of the SMEAR II research station with additional instrumentation for measuring INPs to quantify the concentrations and sources of INPs in the boreal environment. In this contribution, we describe the measurement infrastructure and operating procedures during HyICE-2018 and we report results from specific time periods where INP instruments were run in parallel for inter-comparison purposes. Our results show that the suite of instruments deployed during HyICE-2018 reports consistent results and therefore lays the foundation for forthcoming results to be considered holistically. In addition, we compare the INP concentration we measured to INP parameterizations, and we show a very good agreement with the Tobo et al. (2013) parameterization developed from measurements conducted in a ponderosa pine forest ecosystem in Colorado, USA.


2021 ◽  
Vol 14 (10) ◽  
pp. 6419-6441
Author(s):  
Krista Luoma ◽  
Aki Virkkula ◽  
Pasi Aalto ◽  
Katrianne Lehtipalo ◽  
Tuukka Petäjä ◽  
...  

Abstract. We present a comparison between three absorption photometers that measured the absorption coefficient (σabs) of ambient aerosol particles in 2012–2017 at SMEAR II (Station for Measuring Ecosystem–Atmosphere Relations II), a measurement station located in a boreal forest in southern Finland. The comparison included an Aethalometer (AE31), a multi-angle absorption photometer (MAAP), and a particle soot absorption photometer (PSAP). These optical instruments measured particles collected on a filter, which is a source of systematic errors, since in addition to the particles, the filter fibers also interact with light. To overcome this problem, several algorithms have been suggested to correct the AE31 and PSAP measurements. The aim of this study was to research how the different correction algorithms affected the derived optical properties. We applied the different correction algorithms to the AE31 and PSAP data and compared the results against the reference measurements conducted by the MAAP. The comparison between the MAAP and AE31 resulted in a multiple-scattering correction factor (Cref) that is used in AE31 correction algorithms to compensate for the light scattering by filter fibers. Cref varies between different environments, and our results are applicable to a boreal environment. We observed a clear seasonal cycle in Cref, which was probably due to variations in aerosol optical properties, such as the backscatter fraction and single-scattering albedo, and also due to variations in the relative humidity (RH). The results showed that the filter-based absorption photometers seemed to be rather sensitive to the RH even if the RH was kept below the recommended value of 40 %. The instruments correlated well (R≈0.98), but the slopes of the regression lines varied between the instruments and correction algorithms: compared to the MAAP, the AE31 underestimated σabs only slightly (the slopes varied between 0.96–1.00) and the PSAP overestimated σabs only a little (the slopes varied between 1.01–1.04 for a recommended filter transmittance >0.7). The instruments and correction algorithms had a notable influence on the absorption Ångström exponent: the median absorption Ångström exponent varied between 0.93–1.54 for the different algorithms and instruments.


2020 ◽  
Vol 02 (02) ◽  
pp. 1-1
Author(s):  
Lordwin Girish Kumar Jeyakumar ◽  
◽  
David B. McKenzie ◽  
Laura E. Christianson ◽  
Evan Derdall ◽  
...  

Denitrifying bioreactor technology, where a solid carbon source (woodchips) acts as a reactive medium to intercept agricultural tile drainage water, has been successfully used to convert N (NO3-) to di-nitrogen (N2) gas. Four replicated field-scale (24 m long x 3 m wide x 1 m deep), bioreactors were built and operated at the St. John’s Research and Development Centre and were successful at removing a notable amount of nitrate (N) from agricultural subsurface drainage water. The objective of this study was to investigate the internal flow dynamics of one of these field-scale bioreactors as a proxy for the others. The hydraulic conditions in the bioreactor system developed differently than expected; asymmetric flow rates led to long average hydraulic retention time (HRT) and a highly dispersed residence time distribution, which was revealed by a sodium chloride tracer test. To measure the internal flow a known amount of sodium chloride (salt) was added to water before it entered the bioreactor and samples were collected in 30 minutes intervals. The temperature of water samples taken from the inlet, outlet, and sample ports ranged from 14.5 to 18.4°C With a N removal of 62 to 66% the bioreactor proved at the same time to be very effective under the boreal environment of Newfoundland and Labrador (NL). Mass removal rate (MRR) was calculated to evaluate the performance of woodchip bioreactor. The average MRR was 3.87 gm-3day-1 and the highest was 7.19 gm-3day-1 respectively. The theoretical retention time was calculated to be approximately 10.64 h based on the active flow volume, the length and depth of the system. In comparison the observed retention was 18.18 h


2020 ◽  
Author(s):  
Krista Luoma ◽  
Aki Virkkula ◽  
Pasi Aalto ◽  
Katrianne Lehtipalo ◽  
Tuukka Petäjä ◽  
...  

Abstract. We present a comparison of three absorption photometers that measured the absorption coefficient (σabs) of ambient aerosol particles in 2012–2017 at SMEAR II, a measurement station located in a boreal forest in southern Finland. The comparison included an Aethalometer (AE31), a Multi Angle Absorption Photometer (MAAP), and a Particle Soot Absorption Photometer (PSAP). These optical instruments measured particles collected on a filter, which is a source for systematic errors, since in addition to the particles, also the filter fibers interact with the radiation. To overcome this problem, several algorithms have been suggested to correct the data measured by the AE31 and the PSAP. Our aim is to study how the different correction algorithms affected the derived optical properties. We applied different correction algorithms to the AE31 and PSAP data, and compared the results against the reference measurements conducted by the MAAP. The comparison between the MAAP and AE31 resulted to a multiple scattering correction factor (Cref) used in the AE31 correction algorithms to compensate for the scattering by the filter fibers. The Cref varies between different environments, and our results are applicable for measurements conducted in a boreal environment. We observed a clear seasonal cycle of Cref, which was probably due to the variations in aerosol optical properties, such as the backscatter fraction and single-scattering albedo, and also due to the variations in the relative humidity (RH) even though the RH in the instruments were kept below 40 %. The results showed that the filter measurement methods seemed to be rather sensitive to the RH even if the RH was below the recommended value of 40 %. The instruments correlated well (R ≈ 0.98) but the slopes of the regression lines varied between the instruments and correction algorithms: compared to MAAP, the AE31 underestimated the σabs (the slopes varied between 0.93–0.97) and the PSAP overestimated the σabs (the slopes varied between 1.07–1.24). The instruments and correction algorithms had a notable influence on the absorption Ångström exponent: the median absorption Ångström exponent varied between 0.93–1.54 for the different algorithms and instruments.


2020 ◽  
Vol 20 (11) ◽  
pp. 6687-6706
Author(s):  
Mikhail Paramonov ◽  
Saskia Drossaart van Dusseldorp ◽  
Ellen Gute ◽  
Jonathan P. D. Abbatt ◽  
Paavo Heikkilä ◽  
...  

Abstract. Ice-nucleating particle (INP) measurements were performed in the boreal environment of southern Finland at the Station for Measuring Ecosystem–Atmosphere Relations (SMEAR II) in the winter–spring of 2018. Measurements with the Portable Ice Nucleation Chamber (PINC) were conducted at 242 K and 105 % relative humidity with respect to water. The median INP number concentration [INP] during a 6-week measurement period was 13 L−1. The [INP] spanned 3 orders of magnitude and showed a general increase from mid-February until early April. No single dominant local or regional sources of INPs in the boreal environment of southern Finland could be identified. Rather, it is hypothesised that the INPs detected at SMEAR II are a result of long-range transport and dilution of INPs sourced far from the measurement site. Despite high variability, the measured [INP] values fall within the range expected for the [INP] measured elsewhere under similar thermodynamic conditions. The [INP] did not correlate with any of the examined parameters during the entire field campaign, indicating that no one single parameter can be used to predict the [INP] at the measurement location during the examined time period. The absence of a correlation across the entire field campaign also suggests that a variety of particles act as INPs at different times, although it was indirectly determined that ambient INPs are most likely within the size range of 0.1–0.5 µm in diameter on average. On shorter timescales, several particle species correlated well with the [INP]. Depending on the meteorological conditions, black carbon (BC), supermicron biological particles and sub-0.1 µm particles, most likely nanoscale biological fragments such as ice-nucleating macromolecules (INMs), correlated with the INP signal. However, an increase in the concentration of any of these particle species may not necessarily lead to the increase in the [INP]; the reasons for this remain unknown. Limitations of the instrumental set-up and the necessity for future field INP studies are addressed.


The Holocene ◽  
2020 ◽  
Vol 30 (10) ◽  
pp. 1471-1473
Author(s):  
Igor Popov

Pleistocene Park is a protected area located near the Arctic Circle in the Eastern part of Russia. It was established by Sergey Zimov and his team in order to perform an experiment on the restoration of the environment that existed there during the Pleistocene period. It was expected that low-productivity boreal habitats would be replaced by highly-productive grasslands resembling African savanna. This experiment was launched in 1988, and its continuation is planned for the indefinite future. The territory of the park was surveyed recently and its actual state was characterized.


2020 ◽  
Vol 20 (6) ◽  
pp. 3697-3711 ◽  
Author(s):  
Philipp G. Eger ◽  
Jan Schuladen ◽  
Nicolas Sobanski ◽  
Horst Fischer ◽  
Einar Karu ◽  
...  

Abstract. Pyruvic acid (CH3C(O)C(O)OH, 2-oxopropanoic acid) is an organic acid of biogenic origin that plays a crucial role in plant metabolism, is present in tropospheric air in both gas-phase and aerosol-phase, and is implicated in the formation of secondary organic aerosols (SOAs). Up to now, only a few field studies have reported mixing ratios of gas-phase pyruvic acid, and its tropospheric sources and sinks are poorly constrained. We present the first measurements of gas-phase pyruvic acid in the boreal forest as part of the IBAIRN (Influence of Biosphere–Atmosphere Interactions on the Reactive Nitrogen budget) field campaign in Hyytiälä, Finland, in September 2016. The mean pyruvic acid mixing ratio during IBAIRN was 96 pptv, with a maximum value of 327 pptv. From our measurements we estimated the overall pyruvic acid source strength and quantified the contributions of isoprene oxidation and direct emissions from vegetation in this monoterpene-dominated forested environment. Further, we discuss the relevance of gas-phase pyruvic acid for atmospheric chemistry by investigating the impact of its photolysis on acetaldehyde and peroxy radical production rates. Our results show that, based on our present understanding of its photochemistry, pyruvic acid is an important source of acetaldehyde in the boreal environment, exceeding ethane and propane oxidation by factors of ∼10 and ∼20.


2020 ◽  
Author(s):  
Tuukka Petäjä ◽  
Hanna Lappalainen ◽  
Jaana Bäck ◽  
Markku Kulmala

<p>The environment in the Arctic and boreal is changing rapidly due to megatrends such as globalization, new transport route development, demography and use of natural resources. These megatrends have environmental effects, particularly in terrestrial, marine and cryosphere domains which are undergoing substantial changes. Local, regional, national and international decision-making bodies require fact-based services to tackle challenges of rapid environmental change.  In this presentation we will present results from “integrative and Comprehensive Understanding on Polar Environments (iCUPE) project, which combines in-situ observations and satellite remote sensing for novel data and scientific understanding on the Arctic pollution. We will also summarize the benefits arising from integrated and co-located observations that contribute to different European environmental research infrastructures with practical scientific insights from such synthesis.</p>


Sign in / Sign up

Export Citation Format

Share Document