scholarly journals Remote sensing the vertical profile of cloud droplet effective radius, thermodynamic phase, and temperature

2011 ◽  
Vol 11 (18) ◽  
pp. 9485-9501 ◽  
Author(s):  
J. V. Martins ◽  
A. Marshak ◽  
L. A. Remer ◽  
D. Rosenfeld ◽  
Y. J. Kaufman ◽  
...  

Abstract. Cloud-aerosol interaction is a key issue in the climate system, affecting the water cycle, the weather, and the total energy balance including the spatial and temporal distribution of latent heat release. Information on the vertical distribution of cloud droplet microphysics and thermodynamic phase as a function of temperature or height, can be correlated with details of the aerosol field to provide insight on how these particles are affecting cloud properties and their consequences to cloud lifetime, precipitation, water cycle, and general energy balance. Unfortunately, today's experimental methods still lack the observational tools that can characterize the true evolution of the cloud microphysical, spatial and temporal structure in the cloud droplet scale, and then link these characteristics to environmental factors and properties of the cloud condensation nuclei. Here we propose and demonstrate a new experimental approach (the cloud scanner instrument) that provides the microphysical information missed in current experiments and remote sensing options. Cloud scanner measurements can be performed from aircraft, ground, or satellite by scanning the side of the clouds from the base to the top, providing us with the unique opportunity of obtaining snapshots of the cloud droplet microphysical and thermodynamic states as a function of height and brightness temperature in clouds at several development stages. The brightness temperature profile of the cloud side can be directly associated with the thermodynamic phase of the droplets to provide information on the glaciation temperature as a function of different ambient conditions, aerosol concentration, and type. An aircraft prototype of the cloud scanner was built and flew in a field campaign in Brazil. The CLAIM-3D (3-Dimensional Cloud Aerosol Interaction Mission) satellite concept proposed here combines several techniques to simultaneously measure the vertical profile of cloud microphysics, thermodynamic phase, brightness temperature, and aerosol amount and type in the neighborhood of the clouds. The wide wavelength range, and the use of multi-angle polarization measurements proposed for this mission allow us to estimate the availability and characteristics of aerosol particles acting as cloud condensation nuclei, and their effects on the cloud microphysical structure. These results can provide unprecedented details on the response of cloud droplet microphysics to natural and anthropogenic aerosols in the size scale where the interaction really happens.

2007 ◽  
Vol 7 (2) ◽  
pp. 4481-4519 ◽  
Author(s):  
J. Vanderlei Martins ◽  
A. Marshak ◽  
L. A. Remer ◽  
D. Rosenfeld ◽  
Y. J. Kaufman ◽  
...  

Abstract. Cloud-aerosol interaction is no longer simply a radiative problem, but one affecting the water cycle, the weather, and the total energy balance including the spatial and temporal distribution of latent heat release. Information on the vertical distribution of cloud droplet microphysics and thermodynamic phase as a function of temperature or height, can be correlated with details of the aerosol field to provide insight on how these particles are affecting cloud properties and its consequences to cloud lifetime, precipitation, water cycle, and general energy balance. Unfortunately, today's experimental methods still lack the observational tools that can characterize the true evolution of the cloud microphysical, spatial and temporal structure in the cloud droplet scale, and then link these characteristics to environmental factors and properties of the cloud condensation nuclei. Here we propose and demonstrate a new experimental approach (the cloud scanner instrument) that provides the microphysical information missed in current experiments and remote sensing options. Cloud scanner measurements can be performed from aircraft, ground, or satellite by scanning the side of the clouds from the base to the top, providing us with the unique opportunity of obtaining snapshots of the cloud droplet microphysical and thermodynamic states as a function of height and brightness temperature in clouds at several development stages. The brightness temperature profile of the cloud side can be directly associated with the thermodynamic phase of the droplets to provide information on the glaciation temperature as a function of different ambient conditions, aerosol concentration, and type. An aircraft prototype of the cloud scanner was built and flew in a field campaign in Brazil. The CLAIM-3D (3-Dimensional Cloud Aerosol Interaction Mission) satellite concept proposed here combines several techniques to simultaneously measure the vertical profile of cloud microphysics, thermodynamic phase, brightness temperature, and aerosol amount and type in the neighborhood of the clouds. The wide wavelength range, and the use of mutli-angle polarization measurements proposed for this mission allow us to estimate the availability and characteristics of aerosol particles acting as cloud condensation nuclei, and their effects on the cloud microphysical structure. These results can provide unprecedented details on the response of cloud droplet microphysics to natural and anthropogenic aerosols in the size scale where the interaction really happens.


2011 ◽  
Vol 11 (9) ◽  
pp. 4411-4423 ◽  
Author(s):  
M. Bangert ◽  
C. Kottmeier ◽  
B. Vogel ◽  
H. Vogel

Abstract. We have extended the coupled mesoscale atmosphere and chemistry model COSMO-ART to account for the transformation of aerosol particles into cloud condensation nuclei and to quantify their interaction with warm cloud microphysics on the regional scale. The new model system aims to fill the gap between cloud resolving models and global scale models. It represents the very complex microscale aerosol and cloud physics as detailed as possible, whereas the continental domain size and efficient codes will allow for both studying weather and regional climate. The model system is applied in a first extended case study for Europe for a cloudy five day period in August 2005. The model results show that the mean cloud droplet number concentration of clouds is correlated with the structure of the terrain, and we present a terrain slope parameter TS to classify this dependency. We propose to use this relationship to parameterize the probability density function, PDF, of subgrid-scale cloud updraft velocity in the activation parameterizations of climate models. The simulations show that the presence of cloud condensation nuclei (CCN) and clouds are closely related spatially. We find high aerosol and CCN number concentrations in the vicinity of clouds at high altitudes. The nucleation of secondary particles is enhanced above the clouds. This is caused by an efficient formation of gaseous aerosol precursors above the cloud due to more available radiation, transport of gases in clean air above the cloud, and humid conditions. Therefore the treatment of complex photochemistry is crucial in atmospheric models to simulate the distribution of CCN. The mean cloud droplet number concentration and droplet diameter showed a close link to the change in the aerosol. To quantify the net impact of an aerosol change on the precipitation we calculated the precipitation susceptibility β for the whole model domain over a period of two days with an hourly resolution. The distribution function of β is slightly skewed to positive values and has a mean of 0.23. Clouds with a liquid water path LWP of approximately 0.85 kg m−2 are on average most susceptible to aerosol changes in our simulations with an absolute value of β of 1. The average β for LWP between 0.5 kg m−2 and 1 kg m−2 is approximately 0.4.


2018 ◽  
Vol 75 (10) ◽  
pp. 3365-3379 ◽  
Author(s):  
Gustavo C. Abade ◽  
Wojciech W. Grabowski ◽  
Hanna Pawlowska

This paper discusses the effects of cloud turbulence, turbulent entrainment, and entrained cloud condensation nuclei (CCN) activation on the evolution of the cloud droplet size spectrum. We simulate an ensemble of idealized turbulent cloud parcels that are subject to entrainment events modeled as a random process. Entrainment events, subsequent turbulent mixing inside the parcel, supersaturation fluctuations, and the resulting stochastic droplet activation and growth by condensation are simulated using a Monte Carlo scheme. Quantities characterizing the turbulence intensity, entrainment rate, CCN concentration, and the mean fraction of environmental air entrained in an event are all specified as independent external parameters. Cloud microphysics is described by applying Lagrangian particles, the so-called superdroplets. These are either unactivated CCN or cloud droplets that grow from activated CCN. The model accounts for the addition of environmental CCN into the cloud by entraining eddies at the cloud edge. Turbulent mixing of the entrained dry air with cloudy air is described using the classical linear relaxation to the mean model. We show that turbulence plays an important role in aiding entrained CCN to activate, and thus broadening the droplet size distribution. These findings are consistent with previous large-eddy simulations (LESs) that consider the impact of variable droplet growth histories on the droplet size spectra in small cumuli. The scheme developed in this work is ready to be used as a stochastic subgrid-scale scheme in LESs of natural clouds.


2020 ◽  
Vol 20 (5) ◽  
pp. 3029-3040 ◽  
Author(s):  
Mary Kacarab ◽  
K. Lee Thornhill ◽  
Amie Dobracki ◽  
Steven G. Howell ◽  
Joseph R. O'Brien ◽  
...  

Abstract. The southeastern Atlantic (SEA) and its associated cloud deck, off the west coast of central Africa, is an area where aerosol–cloud interactions can have a strong radiative impact. Seasonally, extensive biomass burning (BB) aerosol plumes from southern Africa reach this area. The NASA ObseRvations of Aerosols above CLouds and their intEractionS (ORACLES) study focused on quantitatively understanding these interactions and their importance. Here we present measurements of cloud condensation nuclei (CCN) concentration, aerosol size distribution, and characteristic vertical updraft velocity (w∗) in and around the marine boundary layer (MBL) collected by the NASA P-3B aircraft during the August 2017 ORACLES deployment. BB aerosol levels vary considerably but systematically with time; high aerosol concentrations were observed in the MBL (800–1000 cm−3) early on, decreasing midcampaign to concentrations between 500 and 800 cm−3. By late August and early September, relatively clean MBL conditions were sampled (<500 cm−3). These data then drive a state-of-the-art droplet formation parameterization from which the predicted cloud droplet number and its sensitivity to aerosol and dynamical parameters are derived. Droplet closure was achieved to within 20 %. Droplet formation sensitivity to aerosol concentration, w∗, and the hygroscopicity parameter, κ, vary and contribute to the total droplet response in the MBL clouds. When aerosol concentrations exceed ∼900 cm−3 and maximum supersaturation approaches 0.1 %, droplet formation in the MBL enters a velocity-limited droplet activation regime, where the cloud droplet number responds weakly to CCN concentration increases. Below ∼500 cm−3, in a clean MBL, droplet formation is much more sensitive to changes in aerosol concentration than to changes in vertical updraft. In the competitive regime, where the MBL has intermediate pollution (500–800 cm−3), droplet formation becomes much more sensitive to hygroscopicity (κ) variations than it does in clean and polluted conditions. Higher concentrations increase the sensitivity to vertical velocity by more than 10-fold. We also find that characteristic vertical velocity plays a very important role in driving droplet formation in a more polluted MBL regime, in which even a small shift in w∗ may make a significant difference in droplet concentrations. Identifying regimes where droplet number variability is driven primarily by updraft velocity and not by aerosol concentration is key for interpreting aerosol indirect effects, especially with remote sensing. The droplet number responds proportionally to changes in characteristic velocity, offering the possibility of remote sensing of w∗ under velocity-limited conditions.


2019 ◽  
Author(s):  
Courtney D. Hatch ◽  
Paul R. Tumminello ◽  
Megan A. Cassingham ◽  
Ann L. Greenaway ◽  
Rebecca Meredith ◽  
...  

Abstract. Insoluble atmospheric aerosol, such as mineral dust, has been identified as an important contributor to the cloud droplet number concentration and indirect climate effect. However, empirically-derived Frenkel-Halsey-Hill (FHH) water adsorption parameters remain the largest source of uncertainty in assessing the effect of insoluble aerosol on climate using the FHH activation theory (FHH-AT). Furthermore, previously reported FHH water adsorption parameters for illite and montmorillonite determined from water adsorption measurements below 100 % RH do not satisfactorily agree with values determined from FHH-AT analysis of experimental cloud condensation nuclei (CCN) measurements under supersaturated conditions. The work reported here uses previously reported experimental water adsorption measurements for illite and montmorillonite clays (Hatch et al., 2012; Hatch et al., 2014) to show that improved analysis methods that account for the surface microstructure are necessary to obtain better agreement of FHH parameters between water adsorption and experimental CCN-derived FHH parameters.


2017 ◽  
Vol 74 (10) ◽  
pp. 3145-3166 ◽  
Author(s):  
K. Gayatri ◽  
S. Patade ◽  
T. V. Prabha

Abstract The Weather Research and Forecasting (WRF) Model coupled with a spectral bin microphysics (SBM) scheme is used to investigate aerosol effects on cloud microphysics and precipitation over the Indian peninsular region. The main emphasis of the study is in comparing simulated cloud microphysical structure with in situ aircraft observations from the Cloud Aerosol Interaction and Precipitation Enhancement Experiment (CAIPEEX). Aerosol–cloud interaction over the rain-shadow region is investigated with observed and simulated size distribution spectra of cloud droplets and ice particles in monsoon clouds. It is shown that size distributions as well as other microphysical characteristics obtained from simulations such as liquid water content, cloud droplet effective radius, cloud droplet number concentration, and thermodynamic parameters are in good agreement with the observations. It is seen that in clouds with high cloud condensation nuclei (CCN) concentrations, snow and graupel size distribution spectra were broader compared to clouds with low concentrations of CCN, mainly because of enhanced riming in the presence of a large number of droplets with a diameter of 10–30 μm. The Hallett–Mossop ice multiplication process is illustrated to have an impact on snow and graupel mass. The changes in CCN concentrations have a strong effect on cloud properties over the domain, amounts of cloud water, and the glaciation of the clouds, but the effects on surface precipitation are small when averaged over a large area. Overall enhancement of cold-phase cloud processes in the high-CCN case contributed to slight enhancement (5%) in domain-averaged surface precipitation.


2011 ◽  
Vol 4 (12) ◽  
pp. 2749-2765 ◽  
Author(s):  
G. Martucci ◽  
C. D. O'Dowd

Abstract. A technique for retrieving warm cloud microphysics using synergistic ground based remote sensing instruments is presented. The SYRSOC (SYnergistic Remote Sensing Of Cloud) technique utilises a Ka-band Doppler cloud RADAR, a LIDAR (or ceilometer) and a multichannel microwave radiometer. SYRSOC retrieves the main microphysical parameters such as cloud droplet number concentration (CDNC), droplets effective radius (reff), cloud liquid water content (LWC), and the departure from adiabatic conditions within the cloud. Two retrievals are presented for continental and marine stratocumulus advected over the Mace Head Atmospheric Research Station. Whilst the continental case exhibited high CDCN (N = 382 cm−3; 10th-to-90th percentile [9.4–842.4] cm−3) and small mean effective radius (reff = 4.3; 10th-to-90th percentile [2.9–6.5] μm), the marine case showed low CDNC and large mean effective radius (N = 25 cm−3, 10th-to-90th percentile [1.5–69] cm−3; reff = 28.4 μm, 10th-to-90th percentile [11.2–42.7] μm) as expected since continental air at this location is typically more polluted than marine air. The mean LWC was comparable for the two cases (continental: 0.19 g m−3; marine: 0.16 g m−3) but the 10th–90th percentile range was wider in marine air (continental: 0.11–0.22 g m−3; marine: 0.01–0.38 g m−3). The calculated algorithm uncertainty for the continental and marine case for each variable was, respectively, σN = 161.58 cm−3 and 12.2 cm−3, σreff = 0.86 μm and 5.6 μm, σLWC = 0.03 g m−3 and 0.04 g m−3. The retrieved CDNC are compared to the cloud condensation nuclei concentrations and the best agreement is achieved for a supersaturation of 0.1% in the continental case and between 0.1%–0.75% for the marine stratocumulus. The retrieved reff at the top of the clouds are compared to the MODIS satellite reff: 7 μm (MODIS) vs. 6.2 μm (SYRSOC) and 16.3 μm (MODIS) vs. 17 μm (SYRSOC) for continental and marine cases, respectively. The combined analysis of the CDNC and the reff, for the marine case shows that the drizzle modifies the droplet size distribution and reff especially if compared to reffMOD. The study of the cloud subadiabaticity and the LWC shows the general sub-adiabatic character of both clouds with more pronounced departure from adiabatic conditions in the continental case than in the marine.


Sign in / Sign up

Export Citation Format

Share Document