scholarly journals Spatial distribution of aerosol microphysical and optical properties and direct radiative effect from the China Aerosol Remote Sensing Network

Author(s):  
Huizheng Che ◽  
Xiangao Xia ◽  
Hujia Zhao ◽  
Oleg Dubovik ◽  
Brent N. Holben ◽  
...  

Abstract. Long-term observations of aerosol microphysical and optical properties obtained through ground-based remote sensing at 50 China Aerosol Remote Sensing Network (CARSNET) sites were used to characterize the aerosol climatology for representative remote, rural, and urban areas over China to assess effects on climate. The annual mean effective radii for total particles (Refft) decreased from north to south and from rural to urban sites, and high total particle volumes were found at the urban sites. The aerosol optical depth at 440 nm (AOD440 nm) increased from remote/rural sites (0.12) to urban sites (0.79), and the extinction Ångström exponent (EAE440–870 nm) increased from 0.71 at the arid/semi-arid sites to 1.15 at the urban sites, presumably due to anthropogenic emissions. Single scattering albedos (SSA440 nm) ranged from 0.88 to 0.92 indicating slightly to strongly absorbing aerosols. Absorption AOD440 nm's were 0.01 at the remote sites versus 0.07 at the urban sites. The average direct aerosol radiative effect (DARE) at the bottom of atmosphere increased from the sites in the remote (−24.40 W/m2) to the urban area (−103.28 W/m2) indicating increased cooling at the latter. The DARE for the top of the atmosphere increased from −4.79 W/m2 at the remote sites to −30.05 W/m2 at the urban sites, indicating overall cooling effects for the earth-atmosphere system. A classification method based on SSA440 nm, fine mode fraction (FMF), and EAE440–870 nm showed that coarse mode particles (mainly dust) were dominant at the rural sites near the northwestern deserts, while light-absorbing, fine-mode particles were important at most urban sites. This study will be useful for understanding aerosol climate effects and regional environmental pollution, and the results will provide useful information for satellite validation and the improvement of climate modelings.

2019 ◽  
Vol 19 (18) ◽  
pp. 11843-11864 ◽  
Author(s):  
Huizheng Che ◽  
Xiangao Xia ◽  
Hujia Zhao ◽  
Oleg Dubovik ◽  
Brent N. Holben ◽  
...  

Abstract. Multi-year observations of aerosol microphysical and optical properties, obtained through ground-based remote sensing at 50 China Aerosol Remote Sensing Network (CARSNET) sites, were used to characterize the aerosol climatology for representative remote, rural, and urban areas over China to assess effects on climate. The annual mean effective radii for total particles (ReffT) decreased from north to south and from rural to urban sites, and high total particle volumes were found at the urban sites. The aerosol optical depth at 440 nm (AOD440 nm) increased from remote and rural sites (0.12) to urban sites (0.79), and the extinction Ångström exponent (EAE440–870 nm) increased from 0.71 at the arid and semi-arid sites to 1.15 at the urban sites, presumably due to anthropogenic emissions. Single-scattering albedo (SSA440 nm) ranged from 0.88 to 0.92, indicating slightly to strongly absorbing aerosols. Absorption AOD440 nm values were 0.01 at the remote sites versus 0.07 at the urban sites. The average direct aerosol radiative effect (DARE) at the bottom of atmosphere increased from the sites in the remote areas (−24.40 W m−2) to the urban areas (−103.28 W m−2), indicating increased cooling at the latter. The DARE for the top of the atmosphere increased from −4.79 W m−2 at the remote sites to −30.05 W m−2 at the urban sites, indicating overall cooling effects for the Earth–atmosphere system. A classification method based on SSA440 nm, fine-mode fraction (FMF), and EAE440–870 nm showed that coarse-mode particles (mainly dust) were dominant at the rural sites near the northwestern deserts, while light-absorbing, fine-mode particles were important at most urban sites. This study will be important for understanding aerosol climate effects and regional environmental pollution, and the results will provide useful information for satellite validation and the improvement of climate modelling.


2013 ◽  
Vol 10 (4) ◽  
pp. 295 ◽  
Author(s):  
Taleb Hallal ◽  
Gail P. Box ◽  
David D. Cohen ◽  
Eduard Stelcer

Environmental context Atmospheric aerosols may either scatter or absorb solar radiation, potentially cooling or warming the planet. The warming–cooling effects of aerosols are determined by their optical properties, which depend on chemical composition. To better predict aerosol effects we need a good understanding of aerosol chemistry across a wide size range and geographic area. We report results of a study designed to increase understanding of the chemical composition of fine and coarse aerosols in Sydney. Abstract Between November 2002 and December 2003 samples of PM2.5 and PM10 (particulate matter less than 2.5- and 10-μm aerodynamic diameter) aerosols were collected at four sites in the Sydney Basin in order to determine the spatial and seasonal variation of size-resolved aerosol chemical composition in the Sydney region and relate this to aerosol optical properties. Accelerator-based ion beam analysis was used to determine the elemental composition and black carbon (BC) was determined using the laser integrating plate method. Aerosol species were determined by multiplying a marker element by a factor based on molecular weight ratios. Mass concentrations at the rural sites were lower than at the urban sites with an average PM2.5/PM10 mass ratio of 0.5–0.6 for all sites although at the urban sites it was 0.2–0.25 in summer. For all sites BC was the dominant element, followed by Na. For the urban sites this was followed by Cl suggesting sea salt and then the soil elements Al and Si. For the rural sites the soil elements Al, Si and Ca were more important than Cl, which was found to decrease away from the coast. Analysis of aerosol species shows that BC accounts for a larger portion of PM2.5 than PM10 and sea salt and sulfate levels are higher in summer than in winter.


2013 ◽  
Vol 13 (11) ◽  
pp. 29685-29720 ◽  
Author(s):  
H. Che ◽  
X. Xia ◽  
J. Zhu ◽  
Z. Li ◽  
O. Dubovic ◽  
...  

Abstract. In January 2013, North China Plain experienced several serious haze events. Cimel sunphotometer measurements at seven sites over rural, suburban and urban regions of North China Plain from 1 to 30 January 2013 were used to further our understanding of spatial-temporal variation of aerosol optical parameters and aerosol radiative forcing (ARF). It was found that Aerosol Optical Depth at 500 nm (AOD500 nm) during non-pollution periods at all stations was lower than 0.30 and increased significantly to greater than 1.00 as pollution events developed. The Angstrom exponent (Alpha) was larger than 0.80 for all stations most of the time. AOD500 nm averages increased from north to south during both polluted and non-polluted periods on the three urban sites in Beijing. The fine mode AOD during pollution periods is about a factor of 2.5 times larger than that during the non-pollution period at urban sites but a factor of 5.0 at suburban and rural sites. The fine mode fraction of AOD675 nm was higher than 80% for all sites during January 2013. The absorption AOD675 nm at rural sites was only about 0.01 during pollution periods, while ~0.03–0.07 and 0.01–0.03 during pollution and non-pollution periods at other sites, respectively. Single scattering albedo varied between 0.87 and 0.95 during January 2013 over North China Plain. The size distribution showed an obvious tri-peak pattern during the most serious period. The fine mode effective radius in the pollution period was about 0.01–0.08 μm larger than during non-pollution periods, while the coarse mode radius in pollution periods was about 0.06–0.38 μm less than that during non-pollution periods. The total, fine and coarse mode particle volumes varied by about 0.06–0.34 μm3, 0.03–0.23 μm3, and 0.03–0.10 μm3, respectively, throughout January 2013. During the most intense period (1–16 January), aerosol radiative forcing (ARF) at the surface exceeded −50 W m−2, −180 W m−2, and −200 W m−2 at rural, suburban, and urban sites, respectively. The ARF readings at the top of the atmosphere were approximately −30 W m−2 in rural and −40–60 W m−2 in urban areas. Positive ARF at the top of the atmosphere at the Huimin suburban site was found to be different from others as a result of the high surface albedo due to snow cover.


2018 ◽  
Vol 11 (7) ◽  
pp. 3935-3954 ◽  
Author(s):  
Kirk Knobelspiesse ◽  
Sreeja Nag

Abstract. Determination of aerosol optical properties with orbital passive remote sensing is a difficult task, as observations often have limited information. Multi-angle instruments, such as the Multi-angle Imaging SpectroRadiometer (MISR) and the POlarization and Directionality of the Earth's Reflectances (POLDER), seek to address this by making information-rich multi-angle observations that can be used to better retrieve aerosol optical properties. The paradigm for such instruments is that each angle view is made from one platform, with, for example, a gimballed sensor or multiple fixed view angle sensors. This restricts the observing geometry to a plane within the scene bidirectional reflectance distribution function (BRDF) observed at the top of the atmosphere (TOA). New technological developments, however, support sensors on small satellites flying in formation, which could be a beneficial alternative. Such sensors may have only one viewing direction each, but the agility of small satellites allows one to control this direction and change it over time. When such agile satellites are flown in formation and their sensors pointed to the same location at approximately the same time, they could sample a distributed set of geometries within the scene BRDF. In other words, observations from multiple satellites can take a variety of view zenith and azimuth angles and are not restricted to one azimuth plane as is the case with a single multi-angle instrument. It is not known, however, whether this is as potentially capable as a multi-angle platform for the purposes of aerosol remote sensing. Using a systems engineering tool coupled with an information content analysis technique, we investigate the feasibility of such an approach for the remote sensing of aerosols. These tools test the mean results of all geometries encountered in an orbit. We find that small satellites in formation are equally capable as multi-angle platforms for aerosol remote sensing, as long as their calibration accuracies and measurement uncertainties are equivalent. As long as the viewing geometries are dispersed throughout the BRDF, it appears the quantity of view angles determines the information content of the observations, not the specific observation geometry. Given the smoothly varying nature of BRDF's observed at the TOA, this is reasonable and supports the viability of aerosol remote sensing with small satellites flying in formation. The incremental improvement in information content that we found with number of view angles also supports the concept of a resilient mission comprised of multiple satellites that are continuously replaced as they age or fail.


2013 ◽  
Vol 13 (3) ◽  
pp. 6971-7019
Author(s):  
X. Querol ◽  
A. Alastuey ◽  
M. Viana ◽  
T. Moreno ◽  
C. Reche ◽  
...  

Abstract. We interpret here the variability of levels of carbonaceous aerosols based on a 12-yr database from 78 monitoring stations across Spain especially compiled for this article. Data did not evidence any spatial trends of carbonaceous aerosols across the country. Conversely, results show marked differences in average concentrations from the cleanest, most remote sites (around 1 μg m−3 of non-mineral carbon (nmC), mostly made of organic carbon (OC), with very little elemental carbon (EC) 0.1 μg m−3; OC/EC = 12–15), to the highly polluted major cities (8–10 μg m−3 of nmC; 3–4 μg m−3 of EC; 4–5 μg m−3 of OC; OC/EC = 1–2). Thus, urban (and very specific industrial) pollution was found to markedly increase levels of carbonaceous aerosols in Spain, with much lower impact of biomass burning. Correlations between yearly averaged OC/EC and EC concentrations adjust very well to a potential equation (OC/EC = 3.37 EC−0.67 R2 = 0.94). A similar equation is obtained when including average concentrations obtained at other European sites (y = 3.61x−0.5, R2 = 0.78). A clear seasonal variability in OC and EC concentrations was detected. Both OC and EC concentrations were higher during winter at the traffic and urban sites, but OC increased during the warmer months at the rural sites. Hourly equivalent black carbon (EBC) concentrations at urban sites accurately depict road traffic contributions, varying with distance to road, traffic volume and density, mixing layer height and wind speed. Weekday urban rush-hour EBC peaks are mimicked by concentrations of primary gaseous emissions from road traffic, whereas a single midday peak is characteristic of remote and rural sites. Decreasing annual trends for carbonaceous aerosols were observed between 1999 and 2011 at a large number of stations, probably reflecting the impact of the EURO4 and EURO5 standards in reducing the diesel PM emissions. This has resulted in some cases in an increasing trend of NO2/OC+EC ratios, because these standards have been much less effective for the abatement of NOx exhaust emissions in passenger diesel cars. This study concludes that EC, EBC, and especially nmC and OC+EC are very good candidates for new air quality standards since they cover both emission impact and health related issues.


2014 ◽  
Vol 14 (4) ◽  
pp. 2125-2138 ◽  
Author(s):  
H. Che ◽  
X. Xia ◽  
J. Zhu ◽  
Z. Li ◽  
O. Dubovik ◽  
...  

Abstract. In January 2013, North China Plain experienced several serious haze events. Cimel sunphotometer measurements at seven sites over rural, suburban and urban regions of North China Plain from 1 to 30 January 2013 were used to further our understanding of spatial-temporal variation of aerosol optical parameters and aerosol radiative forcing (ARF). It was found that Aerosol Optical Depth at 500 nm (AOD500 nm) during non-pollution periods at all stations was lower than 0.30 and increased significantly to greater than 1.00 as pollution events developed. The Angstrom exponent (Alpha) was larger than 0.80 for all stations most of the time. AOD500 nm averages increased from north to south during both polluted and non-polluted periods on the three urban sites in Beijing. The fine mode AOD during pollution periods is about a factor of 2.5 times larger than that during the non-pollution period at urban sites but a factor of 5.0 at suburban and rural sites. The fine mode fraction of AOD675 nm was higher than 80% for all sites during January 2013. The absorption AOD675 nm at rural sites was only about 0.01 during pollution periods, while ~0.03–0.07 and 0.01–0.03 during pollution and non-pollution periods at other sites, respectively. Single scattering albedo varied between 0.87 and 0.95 during January 2013 over North China Plain. The size distribution showed an obvious tri-peak pattern during the most serious period. The fine mode effective radius in the pollution period was about 0.01–0.08 μm larger than during non-pollution periods, while the coarse mode radius in pollution periods was about 0.06–0.38 μm less than that during non-pollution periods. The total, fine and coarse mode particle volumes varied by about 0.06–0.34 μm3, 0.03–0.23 μm3, and 0.03–0.10 μm3, respectively, throughout January 2013. During the most intense period (1–16 January), ARF at the surface exceeded −50 W m−2, −180 W m−2, and −200 W m−2 at rural, suburban, and urban sites, respectively. The ARF readings at the top of the atmosphere were approximately −30 W m−2 in rural and −40–60 W m−2 in urban areas. Positive ARF at the top of the atmosphere at the Huimin suburban site was found to be different from others as a result of the high surface albedo due to snow cover.


2018 ◽  
Vol 18 (1) ◽  
pp. 405-425 ◽  
Author(s):  
Huizheng Che ◽  
Bing Qi ◽  
Hujia Zhao ◽  
Xiangao Xia ◽  
Thomas F. Eck ◽  
...  

Abstract. Aerosol pollution in eastern China is an unfortunate consequence of the region's rapid economic and industrial growth. Here, sun photometer measurements from seven sites in the Yangtze River Delta (YRD) from 2011 to 2015 were used to characterize the climatology of aerosol microphysical and optical properties, calculate direct aerosol radiative forcing (DARF) and classify the aerosols based on size and absorption. Bimodal size distributions were found throughout the year, but larger volumes and effective radii of fine-mode particles occurred in June and September due to hygroscopic growth and/or cloud processing. Increases in the fine-mode particles in June and September caused AOD440 nm > 1.00 at most sites, and annual mean AOD440 nm values of 0.71–0.76 were found at the urban sites and 0.68 at the rural site. Unlike northern China, the AOD440 nm was lower in July and August (∼ 0.40–0.60) than in January and February (0.71–0.89) due to particle dispersion associated with subtropical anticyclones in summer. Low volumes and large bandwidths of both fine-mode and coarse-mode aerosol size distributions occurred in July and August because of biomass burning. Single-scattering albedos at 440 nm (SSA440 nm) from 0.91 to 0.94 indicated particles with relatively strong to moderate absorption. Strongly absorbing particles from biomass burning with a significant SSA wavelength dependence were found in July and August at most sites, while coarse particles in March to May were mineral dust. Absorbing aerosols were distributed more or less homogeneously throughout the region with absorption aerosol optical depths at 440 nm ∼ 0.04–0.06, but inter-site differences in the absorption Angström exponent indicate a degree of spatial heterogeneity in particle composition. The annual mean DARF was −93 ± 44 to −79 ± 39 W m−2 at the Earth's surface and ∼ −40 W m−2 at the top of the atmosphere (for the solar zenith angle range of 50 to 80∘) under cloud-free conditions. The fine mode composed a major contribution of the absorbing particles in the classification scheme based on SSA, fine-mode fraction and extinction Angström exponent. This study contributes to our understanding of aerosols and regional climate/air quality, and the results will be useful for validating satellite retrievals and for improving climate models and remote sensing algorithms.


Sign in / Sign up

Export Citation Format

Share Document