scholarly journals Supplementary material to "Local and synoptic meteorological influences on daily variability of summertime surface ozone in eastern China"

Author(s):  
Han Han ◽  
Jane Liu ◽  
Lei Shu ◽  
Tijian Wang ◽  
Huiling Yuan
2020 ◽  
Vol 20 (1) ◽  
pp. 203-222 ◽  
Author(s):  
Han Han ◽  
Jane Liu ◽  
Lei Shu ◽  
Tijian Wang ◽  
Huiling Yuan

Abstract. Ozone pollution in China is influenced by meteorological processes on multiple scales. Using regression analysis and weather classification, we statistically assess the impacts of local and synoptic meteorology on daily variability in surface ozone in eastern China in summer during 2013–2018. In this period, summertime surface ozone in eastern China (20–42∘ N, 110–130∘ E) is among the highest in the world, with regional means of 73.1 and 114.7 µg m−3, respectively, in daily mean and daily maximum 8 h average. Through developing a multiple linear regression (MLR) model driven by local and synoptic weather factors, we establish a quantitative linkage between the daily mean ozone concentrations and meteorology in the study region. The meteorology described by the MLR can explain ∼43 % of the daily variability in summertime surface ozone across eastern China. Among local meteorological factors, relative humidity is the most influential variable in the center and south of eastern China, including the Yangtze River Delta and the Pearl River Delta regions, while temperature is the most influential variable in the north, covering the Beijing–Tianjin–Hebei region. To further examine the synoptic influence of weather conditions explicitly, six predominant synoptic weather patterns (SWPs) over eastern China in summer are objectively identified using the self-organizing map clustering technique. The six SWPs are formed under the integral influence of the East Asian summer monsoon, the western Pacific subtropical high, the Meiyu front, and the typhoon activities. On average, regionally, two SWPs bring about positive ozone anomalies (1.1 µg m−3 or 1.7 % and 2.7 µg m−3 or 4.6 %), when eastern China is under a weak cyclone system or under the prevailing southerly wind. The impact of SWPs on the daily variability in surface ozone varies largely within eastern China. The maximum impact can reach ±8 µg m−3 or ±16 % of the daily mean in some areas. A combination of the regression and the clustering approaches suggests a strong performance of the MLR in predicting the sensitivity of surface ozone in eastern China to the variation of synoptic weather. Our assessment highlights the importance of meteorology in modulating ozone pollution over China.


2019 ◽  
Author(s):  
Han Han ◽  
Jane Liu ◽  
Lei Shu ◽  
Tijian Wang ◽  
Huiling Yuan

Abstract. Ozone pollution in China is influenced by meteorological processes on multiple scales. Using multiple linear regression and weather classification, we statistically assess the impacts of local and synoptic meteorology on daily variability of surface ozone in eastern China in summer during 2013–2018. In this period, summertime surface ozone in eastern China (110–130° E, 20–42° N) is among the highest in the world with regional means of 73.1 and 114.7 µg m−3, respectively, in daily mean and daily maximum 8-hour average. By developing a multiple linear regression (MLR) model driven by local and synoptic weather factors, we establish a quantitative linkage between the daily ozone concentrations and meteorology in the study region. The meteorology described by the MLR model can explain ~ 46 % of the daily variability in summertime surface ozone across eastern China. The model shows that synoptic factors contribute to ~ 37 % of the overall meteorological effects on daily variability of surface ozone in eastern China. Among local meteorological factors, relative humidity is the most influential variable in the center and south of eastern China including the Yangtze River Delta and the Pearl River Delta regions, while temperature is the most influential variable in the north covering the Beijing-Tianjin-Hebei region. To further examine the synoptic influence of weather conditions explicitly, six predominant synoptic weather patterns (SWPs) over eastern China in summer are objectively identified using the self-organizing map clustering technique. The six SWPs are formed under the integral influence of the East Asian summer monsoon, the western Pacific subtropical high, the Meiyu front, and the typhoon activities. The results show that the impacts of each of the SWPs on the daily variability of surface ozone vary largely inside the study area. The maximum impact can reach ±8 µg m−3 or ±16 % of the daily mean over some subregions in eastern China. A combination of the regression and the clustering approaches suggests a strong performance of the MLR model in predicting the sensitivity of surface ozone in eastern China to the variation of synoptic weather. Our assessment highlights the important role of meteorology in modulating ozone pollution over China.


2009 ◽  
Vol 9 (16) ◽  
pp. 6217-6227 ◽  
Author(s):  
T. Wang ◽  
X. L. Wei ◽  
A. J. Ding ◽  
C. N. Poon ◽  
K. S. Lam ◽  
...  

Abstract. Tropospheric ozone is of great importance with regard to air quality, atmospheric chemistry, and climate change. In this paper we report the first continuous record of surface ozone in the background atmosphere of South China. The data were obtained from 1994 to 2007 at a coastal site in Hong Kong, which is strongly influenced by the outflow of Asian continental air during the winter and the inflow of maritime air from the subtropics in the summer. Three methods are used to derive the rate of change in ozone. A linear fit to the 14-year record shows that the ozone concentration increased by 0.58 ppbv/yr, whereas comparing means in years 1994–2000 and 2001–2007 gives an increase of 0.87 ppbv/yr for a 7-year period. The ozone changes in air masses from various source regions are also examined. Using local wind and carbon monoxide (CO) data to filter out local influence, we find that ozone increased by 0.94 ppbv/yr from 1994–2000 to 2001–2007 in air masses from Eastern China, with similar changes in the other two continent-influenced air-mass groups, but no statistically significant change in the marine air. An examination of the nitrogen dioxide (NO2) column obtained from GOME and SCIAMACHY reveals an increase in atmospheric NO2 in China's three fastest developing coastal regions, whereas NO2 in other parts of Asia decreased during the same period, and no obvious trend over the main shipping routes in the South China Sea was indicated. Thus the observed increase in background ozone in Hong Kong is most likely due to the increased emissions of NO2 (and possibly volatile organic compounds (VOCs) as well) in the upwind coastal regions of mainland China. The CO data at Hok Tsui showed less definitive changes compared to the satellite NO2 column. The increase in background ozone likely made a strong contribution (81%) to the rate of increase in "total ozone" at an urban site in Hong Kong, suggesting the need to consider distant sources when developing long-term strategies to mitigate local ozone pollution.


Sign in / Sign up

Export Citation Format

Share Document