scholarly journals Comparison of IAGOS in-situ water vapour measurements and ECMWF ERA-Interim Reanalysis data

2019 ◽  
Author(s):  
Philipp Reutter ◽  
Patrick Neis ◽  
Susanne Rohs ◽  
Bastien Sauvage

Abstract. Cirrus clouds and their potential formation regions, so-called ice-supersaturated regions (ISSRs) occur frequently in the tropopause region. It is assumed that ISSRs and cirrus clouds can change the tropopause structure by diabatic processes, driven by latent heating due to phase transition and interaction with radiation. For many research questions a three-dimensional picture including a sufficient temporal resolution of the water vapour fields in the tropopause region is required. This requirement is fulfilled nowadays by reanalysis products such as the European Centre for Medium-Range Weather Forecasts (ECMWF) ERA-Interim reanalysis. However, for a meaningful investigation of water vapour in the tropopause region a comparison of the reanalysis data with measurement is advisable, since it is difficult to measure water vapour and to assimilate meaningful measurements into reanalysis products. Here, we present an intercomparison of high-resolution in-situ measurements aboard passenger aircraft within the European Research Infrastructure IAGOS (In-service Aircraft for a Global Observing System; http://www.iagos.org) with ERA-Interim. Temperature and humidity data over the North Atlantic from 2000 to 2010 are compared relative to the dynamical tropopause. The comparison of the temperature shows a good agreement between measurement and ERA-Interim. While ERA-Interim can reproduce the main features of the water vapour measurements of IAGOS, the variability of the data is underestimated by the reanalysis data. The combination of temperature and water vapour leads to the relative humidity with respect to ice (RHi). Here ERA-Interim deviates from the measurements concerning values of larger than RHi=100 %, both in number and strength of supersaturation. The comparison of ISSR pathlengths shows distinct differences, which can be traced back to the spatial resolution of both data sets. IAGOS shows significantly more smaller ISSRs compared to ERA-Interim. A good agreement begins only at pathlengths in the order of the ERA-Interim spatial resolution and larger.

2020 ◽  
Vol 20 (2) ◽  
pp. 787-804 ◽  
Author(s):  
Philipp Reutter ◽  
Patrick Neis ◽  
Susanne Rohs ◽  
Bastien Sauvage

Abstract. Cirrus clouds and their potential formation regions, so-called ice supersaturated regions (ISSRs), with values of relative humidity with respect to ice exceeding 100 %, occur frequently in the tropopause region. It is assumed that ISSRs and cirrus clouds can change the tropopause structure by diabatic processes, driven by latent heating due to phase transition and interaction with radiation. For many research questions, a three-dimensional picture including a sufficient temporal resolution of the water vapour fields in the tropopause region is required. This requirement is fulfilled nowadays by reanalysis products such as the European Centre for Medium-Range Weather Forecasts (ECMWF) ERA-Interim reanalysis. However, for a meaningful investigation of water vapour in the tropopause region, a comparison of the reanalysis data with measurement is advisable, since it is difficult to measure water vapour and to assimilate meaningful measurements into reanalysis products. Here, we present an intercomparison of high-resolution in situ measurements aboard passenger aircraft within the European Research Infrastructure IAGOS (In-service Aircraft for a Global Observing System; http://www.iagos.org, last access: 15 January 2020) with ERA-Interim. Temperature and humidity data over the North Atlantic from 2000 to 2009 are compared relative to the dynamical tropopause. The comparison of the temperature shows good agreement between the measurement and ERA-Interim. While ERA-Interim also shows the main features of the water vapour measurements of IAGOS, the variability of the data is clearly smaller in the reanalysis data set. The combination of temperature and water vapour leads to the relative humidity with respect to ice (RHi). Here, ERA-Interim deviates from the measurements concerning values larger than RHi=100 %, both in number and strength of supersaturation. Also, pathlengths of ISSRs along flight tracks are investigated, representing macrophysical properties as linked to atmospheric flows. The comparison of ISSR pathlengths shows distinct differences, which can be traced back to the spatial resolution of both data sets. Also, the seasonal cycle and height dependence of pathlengths changes for the different data sets due to their spatial resolution. IAGOS shows a significantly greater amount of smaller ISSRs compared to ERA-Interim. Good agreement begins only at pathlengths on the order of the ERA-Interim spatial resolution and larger.


2009 ◽  
Vol 9 (3) ◽  
pp. 897-908 ◽  
Author(s):  
P. Kishore ◽  
S. P. Namboothiri ◽  
J. H. Jiang ◽  
V. Sivakumar ◽  
K. Igarashi

Abstract. This paper mainly focuses on the validation of temperature estimates derived with the newly launched Constellation Observing System for Meteorology Ionosphere and Climate (COSMIC)/Formosa Satellite 3 (FORMOSAT-3) system. The analysis is based on the radio occultation (RO) data samples collected during the first year observation from April 2006 to April 2007. For the validation, we have used the operational stratospheric analyses including the National Centers for Environmental Prediction - Reanalysis (NCEP), the Japanese 25-year Reanalysis (JRA-25), and the United Kingdom Met Office (MetO) data sets. Comparisons done in different formats reveal good agreement between the COSMIC and reanalysis outputs. Spatially, the largest deviations are noted in the polar latitudes, and height-wise, the tropical tropopause region noted the maximum differences (2–4 K). We found that among the three reanalysis data sets the NCEP data sets have the best resemblance with the COSMIC measurements.


2016 ◽  
Vol 9 (12) ◽  
pp. 5735-5745 ◽  
Author(s):  
Madineni Venkat Ratnam ◽  
Alladi Hemanth Kumar ◽  
Achuthan Jayaraman

Abstract. To date, several satellites measurements are available which can provide profiles of temperature and water vapour with reasonable accuracies. However, the temporal resolution has remained poor, particularly over the tropics, as most of them are polar orbiting. At this juncture, the launch of INSAT-3D (Indian National Satellite System) by the Indian Space Research Organization (ISRO) on 26 July 2013 carrying a multi-spectral imager covering visible to long-wave infrared made it possible to obtain profiles of temperature and water vapour over India with higher temporal and vertical resolutions and altitude coverage, besides other parameters. The initial validation of INSAT-3D data is made with the high temporal (3 h) resolution radiosonde observations launched over Gadanki (13.5° N, 79.2° E) during a special campaign and routine evening soundings obtained at 12:00 UTC (17:30 LT). We also compared INSAT-3D data with the radiosonde observations obtained from 34 India Meteorological Department stations. Comparisons were also made over India with data from other satellites like AIRS, MLS and SAPHIR and from ERA-Interim and NCEP reanalysis data sets. INSAT-3D is able to show better coverage over India with high spatial and temporal resolutions as expected. Good correlation in temperature between INSAT-3D and in situ measurements is noticed except in the upper tropospheric and lower stratospheric regions (positive bias of 2–3 K). There is a mean dry bias of 20–30 % in the water vapour mixing ratio. Similar biases are noticed when compared to other satellites and reanalysis data sets. INSAT-3D shows a large positive bias in temperature above 25° N in the lower troposphere. Thus, caution is advised when using these data for tropospheric studies. Finally it is concluded that temperature data from INSAT-3D are of high quality and can be directly assimilated for better forecasts over India.


2018 ◽  
Author(s):  
Ana C. Parracho ◽  
Olivier Bock ◽  
Sophie Bastin

Abstract. Water vapour plays a key role in the climate system. However, its short residence time in the atmosphere and its high variability in space and time make it challenging when it comes to study trends and variability. There are several sources of water vapour data. In this work we use Integrated Water Vapour (IWV) estimated from GPS observations and atmospheric reanalyses. Monthly and seasonal means, interannual variability, and linear trends are analysed and compared for the period between 1995 and 2010. A general good agreement is found but this study highlights issues in both GPS and reanalysis data sets. In GPS, gaps and inhomogeneities in the time series are evidenced, which affect mainly variability and trend estimation. In ERA-Interim, too strong trends in certain regions (e.g. drying over northern Africa and Australia, and moistening over northern South America) were found. Representativeness differences in coastal areas and regions of complex topography (mountain ranges, islands) are also evidenced as limitations to the intercomparison of the point observations and reanalysis data. A general good agreement is found for the means and variabilities, with the exception of a few stations where representativeness issues are suspected. Monthly IWV trends are also found to be in good sign agreement, with the exception of a handful of stations where, in addition to representativeness errors, there might be inhomogeneities in the GPS time series. Seasonal trends are found to be different and more intense than monthly trends, which emphasizes the influence of atmospheric circulation on IWV trends. In order to assess strong trends over regions lacking GPS stations, a second reanalysis, MERRA-2, is introduced. The period of analysis is extended to 1980–2016 (the longest period the reanalyses have in common) and differences with the shorter period are found. This exemplifies how much IWV trends are dependent on the time period at study and must be interpreted carefully. Temperature trends are also computed for both reanalyses. The Clausius-Clapeyron scaling ratio is found to not be a good humidity proxy at seasonal and regional scales. Regions over northern Africa and Australia, where ERA-Interim and MERRA-2 disagree, are investigated further. Dynamics at these regions is assessed by analyzing the wind fields at 925 hPa and is shown to be tightly linked with the trends and variability in IWV.


2020 ◽  
Author(s):  
Philipp Reutter ◽  
Patrick Neis ◽  
Susanne Rohs ◽  
Bastien Sauvage ◽  
Peter Spichtinger ◽  
...  

<p>Cirrus clouds and their potential formation regions, so-called ice-supersaturated regions (ISSRs) occur frequently in the tropopause region. It is assumed that ISSRs and cirrus clouds can change the tropopause structure by diabatic processes, driven by latent heating due to phase transitions and interaction with radiation. These effects may also alter the distribution of potential vorticity (PV) in the upper troposphere, thus leading to changes in large scale dynamics and stratosphere-to-troposphere exchange.  </p><p>The measurement of water vapour at the tropopause level is not trivial. Beside radiosonde data the most important in-situ dataset is provided by in-service passenger airplanes. The European Research Infrastructure ’In-service Aircraft for a Global Observing System’ (IAGOS) (Petzold et al., 2015) provides long-term in-situ measurements on board commercial passenger aircraft. Along its flight track every aircraft is monitoring the chemical composition of the surrounding air and atmospheric state parameters by compact instruments. Especially in the upper troposphere/lowermost stratosphere (UTLS) these measurements are very valuable as most flight tracks are situated in heights between 9 to 13 km, depending on the actual weather conditions, seasons and geographic region. </p><p>However, for many research questions a three-dimensional picture including a sufficient temporal resolution of the water vapour fields in the UTLS region is required. Hence, in our study we use the in-situ data from IAGOS to quantify the quality of the established and often used ERA-Interim data set. The underlying IFS-model of this reanalysis data allows explicitly ice-supersaturation in cloud free conditions and is therefore suitable for comparison. For instance, we compare properties such as the seasonal cycle of the vertical distribution of water vapour mixing ratio, relative humidity and the fraction of ice-supersaturated regions. </p>


2019 ◽  
Vol 93 (12) ◽  
pp. 2651-2660 ◽  
Author(s):  
Sergey Samsonov

AbstractThe previously presented Multidimensional Small Baseline Subset (MSBAS-2D) technique computes two-dimensional (2D), east and vertical, ground deformation time series from two or more ascending and descending Differential Interferometric Synthetic Aperture Radar (DInSAR) data sets by assuming that the contribution of the north deformation component is negligible. DInSAR data sets can be acquired with different temporal and spatial resolutions, viewing geometries and wavelengths. The MSBAS-2D technique has previously been used for mapping deformation due to mining, urban development, carbon sequestration, permafrost aggradation and pingo growth, and volcanic activities. In the case of glacier ice flow, the north deformation component is often too large to be negligible. Historically, the surface-parallel flow (SPF) constraint was used to compute the static three-dimensional (3D) velocity field at various glaciers. A novel MSBAS-3D technique has been developed for computing 3D deformation time series where the SPF constraint is utilized. This technique is used for mapping 3D deformation at the Barnes Ice Cap, Baffin Island, Nunavut, Canada, during January–March 2015, and the MSBAS-2D and MSBAS-3D solutions are compared. The MSBAS-3D technique can be used for studying glacier ice flow at other glaciers and other surface deformation processes with large north deformation component, such as landslides. The software implementation of MSBAS-3D technique can be downloaded from http://insar.ca/.


2019 ◽  
Vol 623 ◽  
pp. A6 ◽  
Author(s):  
R. JL. Fétick ◽  
L. Jorda ◽  
P. Vernazza ◽  
M. Marsset ◽  
A. Drouard ◽  
...  

Context. Over the past decades, several interplanetary missions have studied small bodies in situ, leading to major advances in our understanding of their geological and geophysical properties. These missions, however, have had a limited number of targets. Among them, the NASA Dawn mission has characterised in detail the topography and albedo variegation across the surface of asteroid (4) Vesta down to a spatial resolution of ~20 m pixel−1 scale. Aims. Here our aim was to determine how much topographic and albedo information can be retrieved from the ground with VLT/SPHERE in the case of Vesta, having a former space mission (Dawn) providing us with the ground truth that can be used as a benchmark. Methods. We observed Vesta with VLT/SPHERE/ZIMPOL as part of our ESO large programme (ID 199.C-0074) at six different epochs, and deconvolved the collected images with a parametric point spread function (PSF). We then compared our images with synthetic views of Vesta generated from the 3D shape model of the Dawn mission, on which we projected Vesta’s albedo information. Results. We show that the deconvolution of the VLT/SPHERE images with a parametric PSF allows the retrieval of the main topographic and albedo features present across the surface of Vesta down to a spatial resolution of ~20–30 km. Contour extraction shows an accuracy of ~1 pixel (3.6 mas). The present study provides the very first quantitative estimate of the accuracy of ground-based adaptive-optics imaging observations of asteroid surfaces. Conclusions. In the case of Vesta, the upcoming generation of 30–40 m telescopes (ELT, TMT, GMT) should in principle be able to resolve all of the main features present across its surface, including the troughs and the north–south crater dichotomy, provided that they operate at the diffraction limit.


2016 ◽  
Vol 10 (5) ◽  
pp. 1991-2002 ◽  
Author(s):  
Christoph Florian Schaller ◽  
Johannes Freitag ◽  
Sepp Kipfstuhl ◽  
Thomas Laepple ◽  
Hans Christian Steen-Larsen ◽  
...  

Abstract. Along a traverse through North Greenland in May 2015 we collected snow cores up to 2 m depth and analyzed their density and water isotopic composition. A new sampling technique and an adapted algorithm for comparing data sets from different sites and aligning stratigraphic features are presented. We find good agreement of the density layering in the snowpack over hundreds of kilometers, which allows the construction of a representative density profile. The results are supported by an empirical statistical density model, which is used to generate sets of random profiles and validate the applied methods. Furthermore we are able to calculate annual accumulation rates, align melt layers and observe isotopic temperatures in the area back to 2010. Distinct relations of δ18O with both accumulation rate and density are deduced. Inter alia the depths of the 2012 melt layers and high-resolution densities are provided for applications in remote sensing.


2017 ◽  
Vol 200 ◽  
pp. 229-249 ◽  
Author(s):  
Andreas Petzold ◽  
Martina Krämer ◽  
Patrick Neis ◽  
Christian Rolf ◽  
Susanne Rohs ◽  
...  

IAGOS (In-service Aircraft for a Global Observing System) performs long-term routinein situobservations of atmospheric chemical composition (O3, CO, NOx, NOy, CO2, CH4), water vapour, aerosols, clouds, and temperature on a global scale by operating compact instruments on board of passenger aircraft. The unique characteristics of the IAGOS data set originate from the global scale sampling on air traffic routes with similar instrumentation such that the observations are truly comparable and well suited for atmospheric research on a statistical basis. Here, we present the analysis of 15 months of simultaneous observations of relative humidity with respect to ice (RHice) and ice crystal number concentration in cirrus (Nice) from July 2014 to October 2015. The joint data set of 360 hours of RHice–Niceobservations in the global upper troposphere and tropopause region is analysed with respect to the in-cloud distribution of RHiceand related cirrus properties. The majority of the observed cirrus is thin withNice< 0.1 cm−3. The respective fractions of all cloud observations range from 90% over the mid-latitude North Atlantic Ocean and the Eurasian Continent to 67% over the subtropical and tropical Pacific Ocean. The in-cloud RHicedistributions do not depend on the geographical region of sampling. Types of cirrus origin (in situorigin, liquid origin) are inferred for differentNiceregimes and geographical regions. Most importantly, we found that in-cloud RHiceshows a strong correlation toNicewith slightly supersaturated dynamic equilibrium RHiceassociated with higherNicevalues in stronger updrafts.


2006 ◽  
Vol 6 (6) ◽  
pp. 11727-11743 ◽  
Author(s):  
N. A. D. Richards ◽  
Q. Li ◽  
K. W. Bowman ◽  
J. R. Worden ◽  
S. S. Kulawik ◽  
...  

Abstract. We present results from the first assimilation of carbon monoxide (CO) observations from the Tropospheric Emission Spectrometer (TES) into a global three-dimensional (3-D) chemistry and transport model (CTM). A sequential sub-optimal Kalman filter assimilation scheme (Khattatov et al., 2000) was applied to assimilate TES CO profiles during November 2004 into the GEOS-Chem global 3-D CTM. The assimilation results were compared with MOPITT and MOZAIC observations. The assimilation significantly improves model simulation of CO in the middle to upper troposphere, where the MOPITT versus model bias was reduced by up to two-thirds. Assimilation results show higher levels of CO in the southern tropics, consistent with MOPITT observations. We find good agreement between the TES assimilated model estimates of CO and in situ measurements from the MOZAIC program, which shows a negative bias of up to 10 ppbv in middle and upper tropospheric TES CO. The results demonstrate how assimilation can be used for non-coincident validation of TES CO profile retrievals.


Sign in / Sign up

Export Citation Format

Share Document