scholarly journals Source apportionment of black carbon aerosols from light absorption observation and source-oriented modeling: An implication in a coastal city in China

2020 ◽  
Author(s):  
Junjun Deng ◽  
Hao Guo ◽  
Hongliang Zhang ◽  
Jialei Zhu ◽  
Xin Wang ◽  
...  

Abstract. Black carbon (BC) is the most important light absorbing aerosol in the atmosphere. However, sources of atmospheric BC aerosols are largely uncertain, making it difficult to assess its influence on radiative forcing and climate change. In this study, year-round light-absorption observations were conducted during 2014 using an aethalometer in Xiamen, a coastal city in southeast China. Source apportionment of BC was performed and temporal variations in BC sources were characterized based on both light absorption measurements and a source-oriented air quality model. The annual average concentrations of BC from fossil fuel (BCff) and biomass burning (BCbb) were 2932 ± 1444 ng m−3 and 1340 ± 542 ng m−3, contributing 66.7 % and 33.3 % to total BC, respectively. BCbb contribution exhibited clear diurnal cycle with the highest level (37.9 %) in the evening rush hour and seasonal pattern with the maximum (39.9 %) in winter. Conditional probability function (CPF) analysis revealed the large biomass burning contributions were accompanied by east-northeasterly and northerly winds. Backward trajectory indicated that air masses from north and east-central China were associated with larger biomass burning contributions. Potential source contribution function (PSCF) and concentration-weighted trajectory (CWT) suggested that north and east-central China and Southeast Asia were potential sources for both BCff and BCbb. The source-oriented modeling results showed that transportation, residential and open biomass burning accounting for 45.3 %, 30.1 % and 17.6 % were the major BC sources. Among the three fuel catalogs, liquid fossil fuel (46.5 %) was the largest source, followed by biomass burning (32.6 %) and coal combustion (20.9 %). Source contributions of biomass burning and fossil fuel combustion identified by the source-oriented model and observation-based method were in good agreement. The source-oriented model also captured the majority of seasonal variations in source contributions. The findings provide solid supports for controlling fossil fuel sources to limit the impacts of BC on climate change and environmental degradation in the relatively clean region in China.

2020 ◽  
Vol 20 (22) ◽  
pp. 14419-14435
Author(s):  
Junjun Deng ◽  
Hao Guo ◽  
Hongliang Zhang ◽  
Jialei Zhu ◽  
Xin Wang ◽  
...  

Abstract. Black carbon (BC) is the most important light-absorbing aerosol in the atmosphere. However, sources of atmospheric BC aerosols are largely uncertain, making it difficult to assess its influence on radiative forcing and climate change. In this study, year-round light-absorption observations were conducted during 2014 using an aethalometer in Xiamen, a coastal city in Southeast China. Source apportionment of BC was performed and temporal variations in BC sources were characterized based on both light absorption measurements and a source-oriented air quality model. The annual average concentrations of BC from fossil fuel (BCff) and biomass burning (BCbb) by the aethalometer method were 2932 ± 1444 ng m−3 and 1340 ± 542 ng m−3, contributing 66.7 % and 33.3 % to total BC, respectively. A sensitivity analysis was performed with different absorption Ångström exponent (AAE) values of fossil fuel combustion (αff) and biomass burning (αbb), suggesting that the aethalometer method was more sensitive to changes in αbb than αff. BCbb contribution exhibited a clear diurnal cycle, with the highest level (37.9 %) in the evening rush hour and a seasonal pattern with the maximum (39.9 %) in winter. Conditional probability function (CPF) analysis revealed the large biomass-burning contributions were accompanied by east-northeasterly and northerly winds. Backward trajectory indicated that air masses from North and East–Central China were associated with larger biomass-burning contributions. Potential source contribution function (PSCF) and concentration-weighted trajectory (CWT) suggested that North and East–Central China and Southeast Asia were potential sources of both BCff and BCbb. The source-oriented modeling results showed that transportation, residential and open biomass burning accounting for 45.3 %, 30.1 % and 17.6 % were the major BC sources. Among the three fuel catalogs, liquid fossil fuel (46.5 %) was the largest source, followed by biomass burning (32.6 %) and coal combustion (20.9 %). Source contributions of fossil fuel combustion and biomass burning identified by the source-oriented model were 67.4 % and 32.6 %, respectively, close to those obtained by the aethalometer method. The findings provide solid support for controlling fossil fuel sources to limit the impacts of BC on climate change and environmental degradation in the relatively clean region in China.


2019 ◽  
Vol 203 ◽  
pp. 252-261 ◽  
Author(s):  
Amirhosein Mousavi ◽  
Mohammad H. Sowlat ◽  
Christopher Lovett ◽  
Martin Rauber ◽  
Soenke Szidat ◽  
...  

2018 ◽  
Vol 640-641 ◽  
pp. 1231-1240 ◽  
Author(s):  
Amirhosein Mousavi ◽  
Mohammad H. Sowlat ◽  
Sina Hasheminassab ◽  
Andrea Polidori ◽  
Constantinos Sioutas

2017 ◽  
Vol 161 ◽  
pp. 34-47 ◽  
Author(s):  
R.M. Healy ◽  
U. Sofowote ◽  
Y. Su ◽  
J. Debosz ◽  
M. Noble ◽  
...  

2011 ◽  
Vol 4 (7) ◽  
pp. 1409-1420 ◽  
Author(s):  
H. Herich ◽  
C. Hueglin ◽  
B. Buchmann

Abstract. The contributions of fossil fuel (FF) and wood burning (WB) emissions to black carbon (BC) have been investigated in the recent past by analysis of multi-wavelength aethalometer data. This approach utilizes the stronger light absorption of WB aerosols in the near ultraviolet compared to the light absorption of aerosols from FF combustion. Here we present 2.5 years of seven-wavelength aethalometer data from one urban and two rural background sites in Switzerland measured from 2008–2010. The contribution of WB and FF to BC was directly determined from the aerosol absorption coefficients of FF and WB aerosols which were calculated by using confirmed Ångstrom exponents and aerosol light absorption cross-sections that were determined for all sites. Reasonable separation of total BC into contributions from FF and WB was achieved for all sites and seasons. The obtained WB contributions to BC are well correlated with measured concentrations of levoglucosan and potassium while FF contributions to BC correlate nicely with NOx. These findings support our approach and show that the applied source apportionment of BC is well applicable for long-term data sets. During winter, we found that BC from WB contributes on average 24–33 % to total BC at the considered measurement sites. This is a noticeable high fraction as the contribution of wood burning to the total final energy consumption is in Switzerland less than 4 %.


2021 ◽  
Vol 18 (18) ◽  
pp. 5053-5083
Author(s):  
Jessica L. McCarty ◽  
Juha Aalto ◽  
Ville-Veikko Paunu ◽  
Steve R. Arnold ◽  
Sabine Eckhardt ◽  
...  

Abstract. In recent years, the pan-Arctic region has experienced increasingly extreme fire seasons. Fires in the northern high latitudes are driven by current and future climate change, lightning, fuel conditions, and human activity. In this context, conceptualizing and parameterizing current and future Arctic fire regimes will be important for fire and land management as well as understanding current and predicting future fire emissions. The objectives of this review were driven by policy questions identified by the Arctic Monitoring and Assessment Programme (AMAP) Working Group and posed to its Expert Group on Short-Lived Climate Forcers. This review synthesizes current understanding of the changing Arctic and boreal fire regimes, particularly as fire activity and its response to future climate change in the pan-Arctic have consequences for Arctic Council states aiming to mitigate and adapt to climate change in the north. The conclusions from our synthesis are the following. (1) Current and future Arctic fires, and the adjacent boreal region, are driven by natural (i.e. lightning) and human-caused ignition sources, including fires caused by timber and energy extraction, prescribed burning for landscape management, and tourism activities. Little is published in the scientific literature about cultural burning by Indigenous populations across the pan-Arctic, and questions remain on the source of ignitions above 70∘ N in Arctic Russia. (2) Climate change is expected to make Arctic fires more likely by increasing the likelihood of extreme fire weather, increased lightning activity, and drier vegetative and ground fuel conditions. (3) To some extent, shifting agricultural land use and forest transitions from forest–steppe to steppe, tundra to taiga, and coniferous to deciduous in a warmer climate may increase and decrease open biomass burning, depending on land use in addition to climate-driven biome shifts. However, at the country and landscape scales, these relationships are not well established. (4) Current black carbon and PM2.5 emissions from wildfires above 50 and 65∘ N are larger than emissions from the anthropogenic sectors of residential combustion, transportation, and flaring. Wildfire emissions have increased from 2010 to 2020, particularly above 60∘ N, with 56 % of black carbon emissions above 65∘ N in 2020 attributed to open biomass burning – indicating how extreme the 2020 wildfire season was and how severe future Arctic wildfire seasons can potentially be. (5) What works in the boreal zones to prevent and fight wildfires may not work in the Arctic. Fire management will need to adapt to a changing climate, economic development, the Indigenous and local communities, and fragile northern ecosystems, including permafrost and peatlands. (6) Factors contributing to the uncertainty of predicting and quantifying future Arctic fire regimes include underestimation of Arctic fires by satellite systems, lack of agreement between Earth observations and official statistics, and still needed refinements of location, conditions, and previous fire return intervals on peat and permafrost landscapes. This review highlights that much research is needed in order to understand the local and regional impacts of the changing Arctic fire regime on emissions and the global climate, ecosystems, and pan-Arctic communities.


2019 ◽  
Vol 19 (17) ◽  
pp. 11235-11252 ◽  
Author(s):  
Alice Corina Forello ◽  
Vera Bernardoni ◽  
Giulia Calzolai ◽  
Franco Lucarelli ◽  
Dario Massabò ◽  
...  

Abstract. In this paper, a new methodology coupling aerosol optical and chemical parameters in the same source apportionment study is reported. In addition to results on source contributions, this approach provides information such as estimates for the atmospheric absorption Ångström exponent (α) of the sources and mass absorption cross sections (MACs) for fossil fuel emissions at different wavelengths. A multi-time resolution source apportionment study using the Multilinear Engine (ME-2) was performed on a PM10 dataset with different time resolutions (24, 12, and 1 h) collected during two different seasons in Milan (Italy) in 2016. Samples were optically analysed by an in-house polar photometer to retrieve the aerosol absorption coefficient bap (in Mm−1) at four wavelengths (λ=405, 532, 635, and 780 nm) and were chemically characterized for elements, ions, levoglucosan, and carbonaceous components. The dataset joining chemically speciated and optical data was the input for the multi-time resolution receptor model; this approach was proven to strengthen the identification of sources, thus being particularly useful when important chemical markers (e.g. levoglucosan, elemental carbon) are not available. The final solution consisted of eight factors (nitrate, sulfate, resuspended dust, biomass burning, construction works, traffic, industry, aged sea salt); the implemented constraints led to a better physical description of factors and the bootstrap analysis supported the goodness of the solution. As for bap apportionment, consistent with what was expected, biomass burning and traffic were the main contributors to aerosol absorption in the atmosphere. A relevant feature of the approach proposed in this work is the possibility of retrieving a lot of other information about optical parameters; for example, in contrast to the more traditional approach used by optical source apportionment models, here we obtained source-dependent α values without any a priori assumption (α biomass burning =1.83 and α fossil fuels =0.80). In addition, the MACs estimated for fossil fuel emissions were consistent with literature values. It is worth noting that the approach presented here can also be applied using more common receptor models (e.g. EPA PMF instead of multi-time resolution ME-2) if the dataset comprises variables with the same time resolution as well as optical data retrieved by widespread instrumentation (e.g. an Aethalometer instead of in-house instrumentation).


Sign in / Sign up

Export Citation Format

Share Document