scholarly journals Insights into the aging of biomass burning aerosol from satellite observations and 3D atmospheric modeling: Evolution of the aerosol optical properties in Siberian wildfire plumes

2020 ◽  
Author(s):  
Igor B. Konovalov ◽  
Nikolai A. Golovushkin ◽  
Matthias Beekmann ◽  
Meinrat O. Andreae

Abstract. Long-range transport of biomass burning (BB) aerosol from regions affected by wildfires is known to have a significant impact on the radiative balance and air quality in receptor regions, including the Arctic. However, the atmospheric evolution of the optical properties of BB aerosol during the long-range transport events is insufficiently understood, limiting the adequacy of representations of the aerosol processes in chemistry transport and climate models. Here we introduce a framework to infer and interpret changes of the optical properties of BB aerosol from satellite observations of multiple BB plumes. Our framework includes (1) a procedure for analysis of available satellite retrievals of the absorption and extinction aerosol optical depths (AAOD and AOD) and single scattering albedo (SSA) as a function of the BB aerosol photochemical age, and (2) a representation of the AAOD and AOD evolution with a chemistry transport model (CTM) involving a simplified volatility basis set (VBS) scheme with a few adjustable parameters. We apply this framework to analyze a large-scale outflow of BB smoke plumes from Siberia toward Europe that occurred in July 2016. We use AAOD and SSA data derived from OMI (Ozone Monitoring Instrument) satellite measurements in the near-UV range along with 550 nm AOD and carbon monoxide (CO) columns retrieved from MODIS (Moderate Resolution Imaging Spectroradiometer) and IASI (Infrared Atmospheric Sounding Interferometer) satellite observations, respectively, to infer changes in the optical properties of Siberian BB aerosol due to its atmospheric aging and to get insights into the processes underlying these changes. Using the satellite data in combination with simulated data from the CHIMERE CTM, we evaluate the enhancement ratios (EnR) that allow isolating AAOD and AOD changes due to oxidation and gas-particle partitioning processes from those due to other processes, including transport, deposition, and wet scavenging. The behavior of EnRs for AAOD and AOD is then characterized using nonlinear trend analysis. It is found that the EnR for AOD strongly increases (by about a factor of 2) during the first 20–30 hours of the analyzed evolution period, whereas the EnR for AAOD does not exhibit a statistically significant increase during this period. The increase in AOD is accompanied by a statistically significant enhancement of SSA. Further BB aerosol aging (up to several days) is associated with a strong decrease of EnRs for both AAOD and AOD. Our simulations constrained by the observations indicate that the upward trends in EnR for AOD and in SSA are mainly due to atmospheric processing of secondary organic aerosol (SOA), leading to an increase in the mass scattering efficiency of BB aerosol. Evaporation and chemical fragmentation of the SOA species, part of which is assumed to be absorptive (to contain brown carbon), are identified as a likely reason for the subsequent decrease of the EnR for both AAOD and AOD. Hence, our analysis reveals that the long-range transport of smoke plumes from Siberian fires is associated with major changes in BB aerosol optical properties and chemical composition. Overall, this study demonstrates the feasibility of using available satellite observations for evaluating and improving representations in atmospheric models of the BB aerosol aging processes in different regions of the world at much larger temporal scales than those typically addressed in aerosol chamber experiments.

2021 ◽  
Vol 21 (1) ◽  
pp. 357-392
Author(s):  
Igor B. Konovalov ◽  
Nikolai A. Golovushkin ◽  
Matthias Beekmann ◽  
Meinrat O. Andreae

Abstract. Long-range transport of biomass burning (BB) aerosol from regions affected by wildfires is known to have a significant impact on the radiative balance and air quality in receptor regions. However, the changes that occur in the optical properties of BB aerosol during long-range transport events are insufficiently understood, limiting the adequacy of representations of the aerosol processes in chemistry transport and climate models. Here we introduce a framework to infer and interpret changes in the optical properties of BB aerosol from satellite observations of multiple BB plumes. Our framework includes (1) a procedure for analysis of available satellite retrievals of the absorption and extinction aerosol optical depths (AAOD and AOD) and single-scattering albedo (SSA) as a function of the BB aerosol photochemical age and (2) a representation of the AAOD and AOD evolution with a chemistry transport model (CTM) involving a simplified volatility basis set (VBS) scheme with a few adjustable parameters. We apply this framework to analyze a large-scale outflow of BB smoke plumes from Siberia toward Europe that occurred in July 2016. We use AAOD and SSA data derived from OMI (Ozone Monitoring Instrument) satellite measurements in the near-UV range along with 550 nm AOD and carbon monoxide (CO) columns retrieved from MODIS (Moderate Resolution Imaging Spectroradiometer) and IASI (Infrared Atmospheric Sounding Interferometer) satellite observations, respectively, to infer changes in the optical properties of Siberian BB aerosol due to its atmospheric aging and to get insights into the processes underlying these changes. Using the satellite data in combination with simulated data from the CHIMERE CTM, we evaluate the enhancement ratios (EnRs) that allow isolating AAOD and AOD changes due to oxidation and gas–particle partitioning processes from those due to other processes, including transport, deposition, and wet scavenging. The behavior of EnRs for AAOD and AOD is then characterized using nonlinear trend analysis. It is found that the EnR for AOD strongly increases (by about a factor of 2) during the first 20–30 h of the analyzed evolution period, whereas the EnR for AAOD does not exhibit a statistically significant increase during this period. The increase in AOD is accompanied by a statistically significant enhancement of SSA. Further BB aerosol aging (up to several days) is associated with a strong decrease in EnRs for both AAOD and AOD. Our VBS simulations constrained by the observations are found to be more consistent with satellite observations of strongly aged BB plumes than “tracer” simulations in which atmospheric transformations of BB organic aerosol were disregarded. The simulation results indicate that the upward trends in EnR for AOD and in SSA are mainly due to atmospheric processing of secondary organic aerosol (SOA), leading to an increase in the mass scattering efficiency of BB aerosol. Evaporation and chemical fragmentation of the SOA species, part of which is assumed to be absorptive (to contain brown carbon), are identified as likely reasons for the subsequent decrease in the EnR for both AAOD and AOD. Hence, our analysis reveals that the long-range transport of smoke plumes from Siberian fires is associated with major changes in BB aerosol optical properties and chemical composition. Overall, this study demonstrates the feasibility of using available satellite observations for evaluating and improving representations in atmospheric models of the BB aerosol aging processes in different regions of the world at much larger temporal scales than those typically addressed in aerosol chamber experiments.


2016 ◽  
Vol 101 ◽  
pp. 156-173 ◽  
Author(s):  
K.M. Markowicz ◽  
M.T. Chilinski ◽  
J. Lisok ◽  
O. Zawadzka ◽  
I.S. Stachlewska ◽  
...  

2017 ◽  
Author(s):  
Kohei Ikeda ◽  
Hiroshi Tanimoto ◽  
Takafumi Sugita ◽  
Hideharu Akiyoshi ◽  
Yugo Kanaya ◽  
...  

Abstract. We implemented a tagged tracer method of black carbon (BC) into a global chemistry-transport model GEOS-Chem, examined the pathways and efficiency of long-range transport from a variety of anthropogenic and biomass burning emission sources to the Arctic, and quantified the source contributions of individual emissions. Firstly, we evaluated the simulated BC by comparing it with observations at the Arctic sites and found that the simulated seasonal variations were improved by implementing an aging parameterization and reducing the wet scavenging rate by ice clouds. For tagging BC, we added BC tracers distinguished by source types (anthropogenic and biomass burning) and regions; the global domain was divided into 16 and 27 regions for anthropogenic and biomass burning emissions, respectively. Our simulations showed that BC emitted from Europe and Russia was transported to the Arctic mainly in the lower troposphere during winter and spring. In particular, BC transported from Russia was widely spread over the Arctic in winter and spring, leading to a dominant contribution of 62 % to the Arctic BC near the surface as the annual mean. In contrast, BC emitted from East Asia was found to be transported in the middle troposphere into the Arctic mainly over the Okhotsk Sea and East Siberia during winter and spring. We identified an important window area, which allowed a strong incoming of East Asian BC to the Arctic (130°–180° E and 3–8 km altitude at 66° N). The model demonstrated that the contribution from East Asia to the Arctic had a maximum at about 5 km altitude due to uplifting during the long-range transport in early spring. The efficiency of BC transport from East Asia to the Arctic was smaller than that from other large source regions such as Europe, Russia and North America. However, the East Asian contribution was most important for BC in the middle troposphere (41 %) and BC burden over the Arctic (27 %) because of the large emissions from this region. These results suggested that the main sources of the Arctic BC differed with altitude. The contribution of all the anthropogenic sources to Arctic BC concentrations near the surface was dominant (90 %) on an annual basis. The contributions of biomass burning in boreal regions (Siberia, Alaska and Canada) to the annual total BC deposition onto the Arctic were estimated to be 12–15 %, which became the maximum during summer.


1992 ◽  
Vol 19 (6) ◽  
pp. 581-584 ◽  
Author(s):  
B. A. Bodhaine ◽  
J. M. Harris ◽  
J. A. Ogren ◽  
D. J. Hofmann

2013 ◽  
Vol 13 (9) ◽  
pp. 23781-23816 ◽  
Author(s):  
Y. Jian ◽  
T.-M. Fu

Abstract. We analyzed observations from the Multi-angle Imaging SpectroRadiometer (MISR) to determine the injection heights of biomass burning smoke plumes over the Peninsular Southeast Asia (PSEA) in spring, with the goal of evaluating the impacts on pollutant long-range transport. We retrieved the heights of twenty-two thousand MISR smoke pixels from 607 smoke plumes over the PSEA during February to April of the years 2001–2010. Forty-five percent of the analyzed smoke pixels were above the local mean boundary layer (1 km) at MISR overpass time (10:30 a.m. local time). We used the GEOS-Chem model to simulate the transport of PSEA biomass burning pollutants in March 2001. We found that the direct injection of 40% of the PSEA biomass burning emissions had little impact on the long-range transport of CO to downwind regions, compared to a control simulation where all biomass burning emissions were released in the boundary layer. This was because CO at the surface over the PSEA was efficiently lifted into the free troposphere by deep convection associated with synoptic-scale weather systems. For pollutants with lifetimes shorter than the synoptic timescale, such as black carbon aerosol (BC), their long-range transport was much more sensitive to the initial plume injection height. The direct injection of NOx from PSEA biomass burning into the free troposphere drove increased formation and transport of PAN, which in turn led to significant increases of ozone over downwind southern China and northwestern Pacific. The Pacific subtropical high transported PSEA biomass burning pollutants to the marine boundary layer over the tropical northwestern Pacific. We compared our model results to aircraft measurements over the northwestern Pacific during the TRACE-P campaign (March 2001). The direct injection of 40% of the PSEA biomass burning pollutants in the free troposphere in the model led to a more pronounced BC peak at 3 km over the northwestern Pacific, which was in better agreement with the aircraft observations compared to the control simulation. Our analyses highlighted the point that the injection heights of smoke plumes pose large uncertainty to the interpretation of BC measurements downwind of biomass burning regions.


2014 ◽  
Vol 14 (8) ◽  
pp. 3977-3989 ◽  
Author(s):  
Y. Jian ◽  
T.-M. Fu

Abstract. We analyzed observations from the Multi-angle Imaging SpectroRadiometer (MISR) to determine the injection heights of biomass-burning smoke plumes over peninsular Southeast Asia (PSEA, here defined as Vietnam, Cambodia, Thailand, Laos, and Myanmar) in the spring, with the goal of evaluating the impacts on long-range pollutant transport. We retrieved the heights of 22 000 MISR smoke pixels from 607 smoke plumes over PSEA during February to April of the years 2001–2010. Forty-five percent of the analyzed smoke pixels were above the local mean boundary layer (1 km) at MISR overpass time (10:30 a.m. local time). We used the GEOS–Chem model to simulate the transport of PSEA biomass-burning pollutants in March 2001. On a monthly mean basis, we found that the direct injection of 40% of the PSEA biomass-burning emissions had little impact on the long-range transport of CO to downwind regions, compared to a control simulation where all biomass-burning emissions were released in the boundary layer. This was because CO at the surface over PSEA was efficiently lifted into the free troposphere by deep convection associated with synoptic-scale weather systems. For pollutants with lifetimes shorter than the synoptic timescale, such as black carbon aerosol (BC), their long-range transport was much more sensitive to the initial plume injection height. The direct injection of NOx from PSEA biomass burning into the free troposphere drove increased formation and transport of peroxyacetyl nitrate (PAN), which in turn led to a small increase in ozone over downwind southern China and the northwestern Pacific. The Pacific subtropical high transported BC emitted from PSEA biomass burning to the marine boundary layer over the tropical northwestern Pacific. We compared our model results to aircraft measurements over the northwestern Pacific during the TRACE-P campaign (March 2001). The direct injection of 40% of the PSEA biomass-burning pollutants into the free troposphere in the model led to a more pronounced BC peak at 3 km over the northwestern Pacific. Our analysis highlights the point that the injection heights of smoke plumes presents great uncertainty over the interpretation of BC measurements downwind of biomass-burning regions.


2017 ◽  
Vol 17 (17) ◽  
pp. 10515-10533 ◽  
Author(s):  
Kohei Ikeda ◽  
Hiroshi Tanimoto ◽  
Takafumi Sugita ◽  
Hideharu Akiyoshi ◽  
Yugo Kanaya ◽  
...  

Abstract. We implemented a tagged tracer method of black carbon (BC) into a global chemistry transport model, GEOS-Chem, examined the pathways and efficiency of long-range transport from a variety of anthropogenic and biomass burning emission sources to the Arctic, and quantified the source contributions of individual emissions. Firstly, we evaluated the simulated BC by comparing it with observations at the Arctic sites and examined the sensitivity of an aging parameterization and wet scavenging rate by ice clouds. For tagging BC, we added BC tracers distinguished by source types (anthropogenic and biomass burning) and regions; the global domain was divided into 16 and 27 regions for anthropogenic and biomass burning emissions, respectively. Our simulations showed that BC emitted from Europe and Russia was transported to the Arctic mainly in the lower troposphere during winter and spring. In particular, BC transported from Russia was widely spread over the Arctic in winter and spring, leading to a dominant contribution of 62 % to the Arctic BC near the surface as the annual mean. In contrast, BC emitted from East Asia was found to be transported in the middle troposphere into the Arctic mainly over the Sea of Okhotsk and eastern Siberia during winter and spring. We identified an important window area, which allowed a strong incoming of East Asian BC to the Arctic (130–180° E and 3–8 km of altitude at 66° N). The model demonstrated that the contribution from East Asia to the Arctic had a maximum at about 5 km of altitude due to uplifting during long-range transport in early spring. The efficiency of BC transport from East Asia to the Arctic was lower than that from other large source regions such as Europe, Russia, and North America. However, the East Asian contribution was the most important for BC in the middle troposphere (41 %) and the BC burden over the Arctic (27 %) because of the large emissions from this region. These results suggested that the main sources of Arctic BC differed with altitude. The contribution of all the anthropogenic sources to Arctic BC concentrations near the surface was dominant (90 %) on an annual basis. The contributions of biomass burning in boreal regions (Siberia, Alaska, and Canada) to the annual total BC deposition onto the Arctic were estimated to be 12–15 %, which became the maximum during summer.


Sign in / Sign up

Export Citation Format

Share Document