scholarly journals The effects of morphology, mobility size and SOA material coating on the ice nucleation activity of black carbon in the cirrus regime

2020 ◽  
Author(s):  
Cuiqi Zhang ◽  
Yue Zhang ◽  
Martin J. Wolf ◽  
Leonid Nichman ◽  
Chuanyang Shen ◽  
...  

Abstract. There is evidence that black carbon (BC) particles may affect cirrus formation and hence global climate by acting as potential ice nucleating particles (INPs) in the troposphere. Nevertheless, the ice nucleation (IN) ability of bare BC and BC coated with secondary organic aerosol (SOA) material remains uncertain. We have systematically examined the IN ability of 100–400 nm size-selected BC particles with different morphologies and different SOA coatings representative of anthropogenic (toluene and n-dodecane) and biogenic (β-caryophyllene) sources in the cirrus regime (−46 to −38 °C). Several aerosolized BC proxies were selected to represent different particle morphologies and oxidation levels. Atmospheric aging was further replicated with exposure of SOA-coated BC to OH. The results demonstrate that the 400 nm hydrophobic BC types nucleate ice only at or near the homogeneous freezing threshold (−42 to −46 ˚C). Deposition IN, as opposed to purely homogeneous freezing, was observed to occur for some BC types between 100–200 nm within the investigated temperature range. More fractal BC particles did not consistently act as superior deposition INPs over more spherical ones. SOA coating generated by oxidizing β-caryophyllene with O3 did not seem to affect BC IN ability. However, SOA coatings generated from OH oxidation of various organic species did exhibit higher IN onset supersaturation ratio with respect to ice (SSi) compared with bare BC particles, with toluene SOA coating showing an increase of SSi by 0.1–0.15 while still below the homogeneous threshold. n-dodecane and β-caryophyllene-derived SOA only froze in the homogeneous regime. We attribute the inhibition of IN ability to the filling of the pores on the BC surface by the SOA material coating. OH exposure levels of all SOA coating experiments, from an equivalent atmospheric 10 days to 90 days, did not render significant differences in IN potential. Our study suggests that BC particles with large sizes and/or oxidized surfaces generally exhibit better IN ability, and that the organic coating materials can inhibit ice formation.

2020 ◽  
Vol 20 (22) ◽  
pp. 13957-13984
Author(s):  
Cuiqi Zhang ◽  
Yue Zhang ◽  
Martin J. Wolf ◽  
Leonid Nichman ◽  
Chuanyang Shen ◽  
...  

Abstract. There is evidence that black carbon (BC) particles may affect cirrus formation and, hence, global climate by acting as potential ice nucleating particles (INPs) in the troposphere. Nevertheless, the ice nucleation (IN) ability of bare BC and BC coated with secondary organic aerosol (SOA) material remains uncertain. We have systematically examined the IN ability of 100–400 nm size-selected BC particles with different morphologies and different SOA coatings representative of anthropogenic (toluene and n-dodecane) and biogenic (β-caryophyllene) sources in the cirrus regime (−46 to −38 ∘C). Several BC proxies were selected to represent different particle morphologies and oxidation levels. Atmospheric aging was further replicated with the exposure of SOA-coated BC to OH. The results demonstrate that the 400 nm hydrophobic BC types nucleate ice only at or near the homogeneous freezing threshold. Ice formation at cirrus temperatures below homogeneous freezing thresholds, as opposed to purely homogeneous freezing, was observed to occur for some BC types between 100 and 200 nm within the investigated temperature range. More fractal BC particles did not consistently act as superior INPs over more spherical ones. SOA coating generated by oxidizing β-caryophyllene with O3 did not seem to affect BC IN ability, probably due to an SOA-phase state transition. However, SOA coatings generated from OH oxidation of various organic species did exhibit higher IN-onset supersaturation ratio with respect to ice (SSi), compared with bare BC particles, with the toluene-SOA coating showing an increase in SSi of 0.1–0.15 while still below the homogeneous freezing threshold. Slightly oxidized toluene SOA coating seemed to have a stronger deactivation effect on BC IN ability than highly oxidized toluene SOA, which might be caused by oligomer formation and the phase state transition of toluene SOA under different oxidation levels. n-dodecane and β-caryophyllene-derived SOA-coated BC only froze in the homogeneous regime. We attribute the inhibition of IN ability to the filling of the pores on the BC surface by the SOA material coating. OH exposure levels of n-dodecane and β-caryophyllene SOA coating experiments, from an equivalent atmospheric exposure time from 10 to 90 d, did not render significant differences in the IN potential. Our study of selected BC types and sizes suggests that increases in diameter, compactness, and/or surface oxidation of BC particles lead to more efficient IN via the pore condensation freezing (PCF) pathway, and that coatings of common SOA materials can inhibit the formation of ice.


2015 ◽  
Vol 15 (13) ◽  
pp. 7523-7536 ◽  
Author(s):  
G. P. Schill ◽  
K. Genareau ◽  
M. A. Tolbert

Abstract. Ice nucleation of volcanic ash controls both ash aggregation and cloud glaciation, which affect atmospheric transport and global climate. Previously, it has been suggested that there is one characteristic ice nucleation efficiency for all volcanic ash, regardless of its composition, when accounting for surface area; however, this claim is derived from data from only two volcanic eruptions. In this work, we have studied the depositional and immersion freezing efficiency of three distinct samples of volcanic ash using Raman microscopy coupled to an environmental cell. Ash from the Fuego (basaltic ash, Guatemala), Soufrière Hills (andesitic ash, Montserrat), and Taupo (Oruanui eruption, rhyolitic ash, New Zealand) volcanoes were chosen to represent different geographical locations and silica content. All ash samples were quantitatively analyzed for both percent crystallinity and mineralogy using X-ray diffraction. In the present study, we find that all three samples of volcanic ash are excellent depositional ice nuclei, nucleating ice from 225 to 235 K at ice saturation ratios of 1.05 ± 0.01, comparable to the mineral dust proxy kaolinite. Since depositional ice nucleation will be more important at colder temperatures, fine volcanic ash may represent a global source of cold-cloud ice nuclei. For immersion freezing relevant to mixed-phase clouds, however, only the Oruanui ash exhibited appreciable heterogeneous ice nucleation activity. Similar to recent studies on mineral dust, we suggest that the mineralogy of volcanic ash may dictate its ice nucleation activity in the immersion mode.


2019 ◽  
Vol 19 (19) ◽  
pp. 12175-12194 ◽  
Author(s):  
Leonid Nichman ◽  
Martin Wolf ◽  
Paul Davidovits ◽  
Timothy B. Onasch ◽  
Yue Zhang ◽  
...  

Abstract. Soot and black carbon (BC) particles are generated in the incomplete combustion of fossil fuels, biomass, and biofuels. These airborne particles affect air quality, human health, aerosol–cloud interactions, precipitation formation, and climate. At present, the climate effects of BC particles are not well understood. Their role in cloud formation is obscured by their chemical and physical variability and by the internal mixing states of these particles with other compounds. Ice nucleation in field studies is often difficult to interpret. Nonetheless, most field studies seem to suggest that BC particles are not efficient ice-nucleating particles (INPs). On the other hand, laboratory measurements show that in some cases, BC particles can be highly active INPs under certain conditions. By working with well-characterized BC particles, our aim is to systematically establish the factors that govern the ice nucleation activity of BC. The current study focuses on laboratory measurements of the effectiveness of BC-containing aerosol in the formation of ice crystals in temperature and ice supersaturation conditions relevant to cirrus clouds. We examine ice nucleation on BC particles under water-subsaturated cirrus cloud conditions, commonly understood as deposition-mode ice nucleation. We study a series of well-characterized commercial carbon black particles with varying morphologies and surface chemistries as well as ethylene flame-generated combustion soot. The carbon black particles used in this study are proxies for atmospherically relevant BC aerosols. These samples were characterized by electron microscopy, mass spectrometry, and optical scattering measurements. Ice nucleation activity was systematically examined in temperature and saturation conditions in the ranges of 217≤T≤235 K and 1.0≤Sice≤1.5 and 0.59≤Swater≤0.98, respectively, using a SPectrometer for Ice Nuclei (SPIN) instrument, which is a continuous-flow diffusion chamber coupled with instrumentation to measure light scattering and polarization. To study the effect of coatings on INPs, the BC-containing particles were coated with organic acids found in the atmosphere, namely stearic acid, cis-pinonic acid, and oxalic acid. The results show significant variations in ice nucleation activity as a function of size, morphology, and surface chemistry of the BC particles. The measured ice nucleation activity dependencies on temperature, supersaturation conditions, and the physicochemical properties of the BC particles are consistent with an ice nucleation mechanism of pore condensation followed by freezing. Coatings and surface oxidation modify the initial formation efficiency of pristine ice crystals on BC-containing aerosol. Depending on the BC material and the coating, both inhibition and enhancement in INP activity were observed. Our measurements at low temperatures complement published data and highlight the capability of some BC particles to nucleate ice under low ice supersaturation conditions. These results are expected to help refine theories relating to soot INP activation in the atmosphere.


2015 ◽  
Vol 15 (2) ◽  
pp. 1385-1420 ◽  
Author(s):  
G. P. Schill ◽  
K. Genareau ◽  
M. A. Tolbert

Abstract. Ice nucleation on volcanic ash controls both ash aggregation and cloud glaciation, which affect atmospheric transport and global climate. Previously, it has been suggested that there is one characteristic ice nucleation efficiency for all volcanic ash, regardless of its composition, when accounting for surface area; however, this claim is derived from data from only two volcanic eruptions. In this work, we have studied the depositional and immersion freezing efficiency of three distinct samples of volcanic ash using Raman Microscopy coupled to an environmental cell. Ash from the Fuego (basaltic ash, Guatemala), Soufrière Hills (andesitic ash, Montserrat), and Taupo (Oruanui euption, rhyolitic ash, New Zealand) volcanoes were chosen to represent different geographical locations and silica content. All ash samples were quantitatively analyzed for both percent crystallinity and mineralogy using X-ray diffraction. In the present study, we find that all three samples of volcanic ash are excellent depositional ice nuclei, nucleating ice from 225–235 K at ice saturation ratios of 1.05 ± 0.01, comparable to the mineral dust proxy kaolinite. Since depositional ice nucleation will be more important at colder temperatures, fine volcanic ash may represent a global source of cold-cloud ice nuclei. For immersion freezing relevant to mixed-phase clouds, however, only the Oruanui ash exhibited heterogeneous ice nucleation activity. Similar to recent studies on mineral dust, we suggest that the mineralogy of volcanic ash may dictate its ice nucleation activity in the immersion mode.


2018 ◽  
Author(s):  
Leonid Nichman ◽  
Martin Wolf ◽  
Paul Davidovits ◽  
Timothy B. Onasch ◽  
Yue Zhang ◽  
...  

Abstract. Black carbon (BC) particles are generated in the incomplete combustion of fossil fuels, biomass, and biofuels. These airborne particles affect air quality, human health, and climate. At present, the climate effects of BC particles are not well understood. Their role in cloud formation is obscured by their chemical and physical variability, and by the internal mixing states of these particles with other compounds. The current study focuses on laboratory measurements of the effectiveness of BC-containing aerosol in the formation of ice crystals in cirrus clouds. Ice nucleation in field studies is often difficult to interpret. Nonetheless, most field studies seem to suggest that BC particles are not efficient ice nuclei (IN). On the other hand, laboratory measurements show that in some cases, BC particles can be highly active IN. By working with well-characterized BC-containing particles, our aim is to systematically establish the factors that govern the IN activity of BC. We examine ice nucleation on BC-containing particles under cirrus cloud conditions, commonly understood to be deposition mode ice nucleation. We study a series of well-characterized commercial carbon black particles with varying morphologies and surface chemistries, as well as ethylene flame-generated combustion soot. The carbon black particles used in this study are proxies for atmospherically relevant BC aerosols. These samples were characterized by electron microscopy, mass spectrometry, and optical scattering measurements. Ice nucleation activity was systematically examined in the temperature range from 217–235 K, using a SPectrometer for Ice Nuclei (SPIN) instrument, which is a continuous flow diffusion chamber coupled with instrumentation to measure light scattering and polarization. To study the effect of coatings on IN, the BC-containing particles were coated with organic acids found in the atmosphere, namely, stearic acid, cis-pinonic acid, and oxalic acid. The results show significant variations in ice nucleation activity as a function of size, morphology and surface chemistry of the BC-containing particles. The measured IN activity dependence on temperature and the physicochemical properties of the BC-containing particles are consistent with an ice nucleation mechanism of pore condensation followed by freezing. Coatings and surface oxidation modify the initial ice nucleation ability of BC-containing aerosol. Depending on the BC material and the coating, both inhibition and enhancement in IN activity were observed. Our measurements at low temperatures complement published data, and highlight the capability of some BC particles to nucleate ice under low supersaturation conditions. These results are expected to help refine theories relating to soot IN activation in the atmosphere.


2011 ◽  
Vol 11 (10) ◽  
pp. 27219-27241 ◽  
Author(s):  
B. G. Pummer ◽  
H. Bauer ◽  
J. Bernardi ◽  
S. Bleicher ◽  
H. Grothe

Abstract. The ice nucleation of bioaerosols (bacteria, pollen, spores, etc.) is a topic of growing interest, since their impact on ice cloud formation and thus on radiative forcing, an important parameter in global climate, is not yet fully understood. Here we show that pollen of different species strongly differ in their ice nucleation behaviour. The average freezing temperatures in laboratory experiments range from 240 K to 255 K. As the most efficient nuclei (silver birch, Scots pine and common juniper pollen) have a distribution area up to the Northern timberline, their ice nucleation activity may be a cryoprotective mechanism. Far more intriguingly, it has turned out that water, which has been in contact with pollen and then been separated from the bodies, nucleates as good as the pollen grains themselves. So the ice nuclei have to be easily-suspendable macromolecules located on the pollen surface. Once extracted, they can be distributed further through the atmosphere than the heavy pollen grains and so augment the impact of pollen on ice cloud formation even in the upper Troposphere. Our experiments lead to the conclusion that pollen ice nuclei, in contrast to bacterial and fungal ice nucleating proteins, are non-proteinaceous compounds.


Author(s):  
Philipp Baloh ◽  
Regina Hanlon ◽  
Christopher Anderson ◽  
Eoin Dolan ◽  
Gernot Pacholik ◽  
...  

2021 ◽  
Vol 23 (5) ◽  
pp. 3565-3573
Author(s):  
Esther Chong ◽  
Katherine E. Marak ◽  
Yang Li ◽  
Miriam Arak Freedman

FeO has enhanced ice nucleation activity due to functional groups that are exposed upon mechanical processing.


2017 ◽  
Vol 200 ◽  
pp. 165-194 ◽  
Author(s):  
Joseph C. Charnawskas ◽  
Peter A. Alpert ◽  
Andrew T. Lambe ◽  
Thomas Berkemeier ◽  
Rachel E. O’Brien ◽  
...  

Anthropogenic and biogenic gas emissions contribute to the formation of secondary organic aerosol (SOA). When present, soot particles from fossil fuel combustion can acquire a coating of SOA. We investigate SOA–soot biogenic–anthropogenic interactions and their impact on ice nucleation in relation to the particles’ organic phase state. SOA particles were generated from the OH oxidation of naphthalene, α-pinene, longifolene, or isoprene, with or without the presence of sulfate or soot particles. Corresponding particle glass transition (Tg) and full deliquescence relative humidity (FDRH) were estimated using a numerical diffusion model. Longifolene SOA particles are solid-like and all biogenic SOA sulfate mixtures exhibit a core–shell configuration (i.e.a sulfate-rich core coated with SOA). Biogenic SOA with or without sulfate formed ice at conditions expected for homogeneous ice nucleation, in agreement with respectiveTgand FDRH. α-pinene SOA coated soot particles nucleated ice above the homogeneous freezing temperature with soot acting as ice nuclei (IN). At lower temperatures the α-pinene SOA coating can be semisolid, inducing ice nucleation. Naphthalene SOA coated soot particles acted as ice nuclei above and below the homogeneous freezing limit, which can be explained by the presence of a highly viscous SOA phase. Our results suggest that biogenic SOA does not play a significant role in mixed-phase cloud formation and the presence of sulfate renders this even less likely. However, anthropogenic SOA may have an enhancing effect on cloud glaciation under mixed-phase and cirrus cloud conditions compared to biogenic SOA that dominate during pre-industrial times or in pristine areas.


Sign in / Sign up

Export Citation Format

Share Document