scholarly journals Supplementary material to "The Sun's Role for Decadal Climate Predictability in the North Atlantic"

Author(s):  
Annika Drews ◽  
Wenjuan Huo ◽  
Katja Matthes ◽  
Kunihiko Kodera ◽  
Tim Kruschke
2021 ◽  
Author(s):  
Annika Drews ◽  
Wenjuan Huo ◽  
Katja Matthes ◽  
Kunihiko Kodera ◽  
Tim Kruschke

Abstract. Despite several studies on decadal-scale solar influence on climate, a systematic detection of solar-induced signals at the surface and the Sun's contribution to decadal climate predictability is still missing. Here, we disentangle the solar-cycle-induced climate response from internal variability and from other external forcings such as greenhouse gases. We utilize two 10-member ensemble simulations with a state-of-the-art chemistry climate model, to date a unique data set in chemistry climate modelling. We quantify the potential predictability related to the solar cycle and demonstrate that the detectability of the solar influence on surface climate depends on the magnitude of the solar cycle. Further, we show that a strong solar cycle forcing organizes and synchronizes the decadal-scale component of the North Atlantic Oscillation, the dominant mode of climate variability in the North Atlantic region.


2010 ◽  
Vol 23 (21) ◽  
pp. 5668-5677 ◽  
Author(s):  
Vladimir A. Semenov ◽  
Mojib Latif ◽  
Dietmar Dommenget ◽  
Noel S. Keenlyside ◽  
Alexander Strehz ◽  
...  

Abstract The twentieth-century Northern Hemisphere surface climate exhibits a long-term warming trend largely caused by anthropogenic forcing, with natural decadal climate variability superimposed on it. This study addresses the possible origin and strength of internal decadal climate variability in the Northern Hemisphere during the recent decades. The authors present results from a set of climate model simulations that suggest natural internal multidecadal climate variability in the North Atlantic–Arctic sector could have considerably contributed to the Northern Hemisphere surface warming since 1980. Although covering only a few percent of the earth’s surface, the Arctic may have provided the largest share in this. It is hypothesized that a stronger meridional overturning circulation in the Atlantic and the associated increase in northward heat transport enhanced the heat loss from the ocean to the atmosphere in the North Atlantic region and especially in the North Atlantic portion of the Arctic because of anomalously strong sea ice melt. The model results stress the potential importance of natural internal multidecadal variability originating in the North Atlantic–Arctic sector in generating interdecadal climate changes, not only on a regional scale, but also possibly on a hemispheric and even a global scale.


2020 ◽  
Author(s):  
Shuting Yang ◽  
Bo Christiansen

<p>The skill of the decadal climate prediction is analyzed based on recent ensemble experiments from the CMIP5 and CMIP6 decadal climate prediction projects (DCPP) and the Community Earth System Model (CESM) Large Ensemble (LENS) Project. The experiments are initialized every year at November 1 for the period of 1960-2005 in the CMIP5 DCPP experiments and 1960-2016 for the CMIP6 DCPP models as well as the CESM LENS decadal prediction. The CMIP5/6 ensemble has 10 members for each model and the CESM ensemble has 40 members. For the considered models un-initialized (historical) ensembles with the same forcings exist. The advantage of initialization is analyzed by comparing these two sets of experiments.<br><br>We find that the models agree that for lead-times between 4-10 years little effect of initialization is found except in the North Atlantic sub-polar gyre region (NASPG). This well-known result is found for all the models and is robust to temporal and spatial smoothing. In the sub-polar gyre region the ensemble mean of the forecast explains 30-40 % more of the observed variance than the ensemble mean of the historical non-initialized experiments even for lead-times of 10 years.<br><br>However, the skill in the NASPG seems to a large degree to be related to the shift towards warmer temperatures around 1996. Weak or no skill is found when the sub-periods before and after 1996 are considered. We further analyze the characteristics of other climate indicators than surface temperature as well as the NAO to understand the cause and implication of the prediction skill.</p>


2010 ◽  
Vol 23 (15) ◽  
pp. 4060-4079 ◽  
Author(s):  
Yizhak Feliks ◽  
Michael Ghil ◽  
Andrew W. Robertson

Abstract Oscillatory climatic modes over the North Atlantic, Ethiopian Plateau, and eastern Mediterranean were examined in instrumental and proxy records from these regions. Aside from the well-known North Atlantic Oscillation (NAO) index and the Nile River water-level records, the authors study for the first time an instrumental rainfall record from Jerusalem and a tree-ring record from the Golan Heights. The teleconnections between the regions were studied in terms of synchronization of chaotic oscillators. Standard methods for studying synchronization among such oscillators are modified by combining them with advanced spectral methods, including singular spectrum analysis. The resulting cross-spectral analysis quantifies the strength of the coupling together with the degree of synchronization. A prominent oscillatory mode with a 7–8-yr period is present in all the climatic indices studied here and is completely synchronized with the North Atlantic Oscillation. An energy analysis of the synchronization raises the possibility that this mode originates in the North Atlantic. Evidence is discussed for this mode being induced by the 7–8-yr oscillation in the position of the Gulf Stream front. A mechanism for the teleconnections between the North Atlantic, Ethiopian Plateau, and eastern Mediterranean is proposed, and implications for interannual-to-decadal climate prediction are discussed.


2020 ◽  
Author(s):  
Marion Lagarde ◽  
Nolwenn Lemaitre ◽  
Hélène Planquette ◽  
Mélanie Grenier ◽  
Moustafa Belhadj ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document