scholarly journals Comment on “Short-cut transport path for Asian dust directly to the Arctic: a case Study” by Huang, Z., J. Huang, T., Hayasaka, S. Wang, T. Zhou and H. Jin (2015) in Environ. Res. Lett.

2021 ◽  
Author(s):  
Keyvan Ranjbar ◽  
Norm T. O'Neill ◽  
Yasmin Aboel-Fetouh

Abstract. The suggestion of Huang et al. (2015) on the climatological-scale transport of Asian dust to the Arctic appears to be an important and worthwhile assertion. It is unfortunate that the authors undermined, to a certain degree, the quality of that assertion by a misinterpretation of the critical March 24, 2010 Arctic event (which was chosen by the authors to illustrate their generalized, climatological scale Arctic transport claim). They attempted to characterize that key event using AERONET/AEROCAN retrievals taken a day later and misinterpreted those largely cloud-dominated retrievals as being representative of Asian dust while apparently not recognizing that the coarse mode aerosol optical depth (AOD) retrievals on the previous day were actually coherent with their Arctic transport hypothesis.

2015 ◽  
Vol 10 (11) ◽  
pp. 114018 ◽  
Author(s):  
Zhongwei Huang ◽  
Jianping Huang ◽  
Tadahiro Hayasaka ◽  
Shanshan Wang ◽  
Tian Zhou ◽  
...  
Keyword(s):  

2010 ◽  
Vol 3 (5) ◽  
pp. 1333-1349 ◽  
Author(s):  
E. Kassianov ◽  
M. Ovchinnikov ◽  
L. K. Berg ◽  
S. A. McFarlane ◽  
C. Flynn ◽  
...  

Abstract. A recently developed reflectance ratio (RR) method for the retrieval of aerosol optical depth (AOD) is evaluated using extensive airborne and ground-based data sets collected during the Cloud and Land Surface Interaction Campaign (CLASIC) and the Cumulus Humilis Aerosol Processing Study (CHAPS), which took place in June 2007 over the US Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Southern Great Plains site. A detailed case study is performed for a field of single-layer shallow cumuli observed on 12 June 2007. The RR method is applied to retrieve the spectral values of AOD from the reflectance ratios measured by the MODIS Airborne Simulator (MAS) for two pairs of wavelengths (660 and 470 nm, 870 and 470 nm) collected at a spatial resolution of 0.05 km. The retrieval is compared with an independent AOD estimate from three ground-based Multi-filter Rotating Shadowband Radiometers (MFRSRs). The interpolation algorithm that is used to project MFRSR point measurements onto the aircraft flight tracks is tested using AOD derived from NASA Langley High Spectral Resolution Lidar (HSRL). The RR AOD estimates are in a good agreement (within 5%) with the MFRSR-derived AOD values for the 660-nm wavelength. The AODs obtained from MAS reflectance ratios overestimate those derived from MFRSR measurements by 15–30% for the 470-nm wavelength and underestimate the 870-nm AOD by the same amount.


2010 ◽  
Vol 3 (2) ◽  
pp. 1889-1932
Author(s):  
E. Kassianov ◽  
M. Ovchinnikov ◽  
L. K. Berg ◽  
S. A. McFarlane ◽  
C. Flynn ◽  
...  

Abstract. A recently developed reflectance ratio (RR) method for the retrieval of aerosol optical depth (AOD) is evaluated using extensive airborne and ground-based data sets collected during the Cloud and Land Surface Interaction Campaign (CLASIC) and the Cumulus Humilis Aerosol Processing Study (CHAPS), which took place in June 2007 over the US Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Southern Great Plains site. A detailed case study is performed for a field of single-layer shallow cumuli observed on 12 June 2007. The RR method is applied to retrieve the spectral values of AOD from the reflectance ratios measured by the MODIS Airborne Simulator (MAS) for two pairs of wavelengths (660 and 470 nm and 870 and 470 nm) collected at a spatial resolution of 0.05 km. The retrieval is compared with an independent AOD estimate from three ground-based Multi-filter Rotating Shadowband Radiometers (MFRSRs). The interpolation algorithm that is used to project MFRSR point measurements onto the aircraft flight tracks is tested using AOD derived from NASA Langley High Spectral Resolution Lidar (HSRL). The RR AOD estimates are in a good agreement (within 5%) with the MFRSR-derived AOD values for the 660-nm wavelength. The AODs obtained from MAS reflectance ratios overestimate those derived from MFRSR measurements by 15–30% for the 470-nm wavelength and underestimate the 870-nm AOD by the same amount.


2020 ◽  
Author(s):  
Dmitry M. Kabanov ◽  
Christoph Ritter ◽  
Sergey M. Sakerin

Abstract. In this work hourly averaged sun photometer data from the sites Barentsburg and Ny-Ålesund, both located in Spitsbergen in the European Arctic, are compared. Our data set comprises the years 2011 to 2017. We found for more turbid periods (aerosol optical depth τ0.5 > 0.1) that typically Barentsburg is more polluted than Ny-Ålesund, especially in the short wave spectrum. However, the diurnal variation of AOD is highly correlated. Next, τ was divided into a fine and coarse mode. It was found that generally the fine mode aerosol optical depth dominates and also shows a larger interannual as inner annual variation. Tau fine τf is in fact larger in spring during the Arctic Haze period. Overall the aerosol optical depth seems to decrease, although this is not statistically significant.


Elem Sci Anth ◽  
2014 ◽  
Vol 2 ◽  
Author(s):  
R. S. Stone ◽  
S. Sharma ◽  
A. Herber ◽  
K. Eleftheriadis ◽  
D. W. Nelson

Abstract Aerosols, transported from distant source regions, influence the Arctic surface radiation budget. When deposited on snow and ice, carbonaceous particles can reduce the surface albedo, which accelerates melting, leading to a temperature-albedo feedback that amplifies Arctic warming. Black carbon (BC), in particular, has been implicated as a major warming agent at high latitudes. BC and co-emitted aerosols in the atmosphere, however, attenuate sunlight and radiatively cool the surface. Warming by soot deposition and cooling by atmospheric aerosols are referred to as “darkening” and “dimming” effects, respectively. In this study, climatologies of spectral aerosol optical depth AOD (2001–2011) and Equivalent BC (EBC) (1989–2011) from three Arctic observatories and from a number of aircraft campaigns are used to characterize Arctic aerosols. Since the 1980s, concentrations of BC in the Arctic have decreased by more than 50% at ground stations where in situ observations are made. AOD has increased slightly during the past decade, with variations attributed to changing emission inventories and source strengths of natural aerosols, including biomass smoke and volcanic aerosol, further influenced by deposition rates and airflow patterns.


2013 ◽  
Vol 128 ◽  
pp. 234-245 ◽  
Author(s):  
Linlu Mei ◽  
Yong Xue ◽  
Gerrit de Leeuw ◽  
Wolfgang von Hoyningen-Huene ◽  
Alexander A. Kokhanovsky ◽  
...  

2018 ◽  
Author(s):  
Angela Benedetti ◽  
Francesca Di Giuseppe ◽  
Luke Jones ◽  
Vincent-Henri Peuch ◽  
Samuel Rémy ◽  
...  

Abstract. Asian Dust is a seasonal meteorological phenomenon which affects East Asia, and has severe consequences on the air quality of China, North and South Korea and Japan. Despite the continental extent, the prediction of severe episodes and the anticipation of their consequences is challenging. Three one-year experiments were run to assess the skill of the model of the European Centre for Medium-Range Weather Forecasts (ECMWF) in monitoring Asian dust and understand its relative contribution to air quality over China. Data used were the MODIS Dark Target and the Deep Blue Aerosol Optical Depth. In particular the experiments aimed at understanding the added value of data assimilation runs over a model run without any aerosol data. The year 2013 was chosen as representative for the availability of independent Aerosol Optical Depth (AOD) data from two established ground-based networks (AERONET and CARSNET), which could be used to evaluate experiments. Particulate Matter (PM) data from the China Environmental Protection Agency (CEPA) were also used in the evaluation. Results show that the assimilation of satellite AOD data is beneficial to predict the extent and magnitude of desert-dust events and to improve the forecast of such events. The availability of observations from the MODIS Deep Blue algorithm over bright surfaces is an asset, allowing for a better localization of the sources and definition of the dust events. In general both experiments constrained by data assimilation perform better that the unconstrained experiment, generally showing smaller mean normalized bias and fractional gross error with respect to the independent verification datasets. The impact of the assimilated satellite observations is larger at analysis time, but lasts well into the forecast. While assimilation is not a substitute for model development and characterization of the emission sources, results indicate that it can play a big role in delivering improved forecasts of Asian Dust.


Sign in / Sign up

Export Citation Format

Share Document