fine mode aerosol
Recently Published Documents


TOTAL DOCUMENTS

35
(FIVE YEARS 11)

H-INDEX

11
(FIVE YEARS 1)

Author(s):  
Milena Ponczek ◽  
Marco Aurélio de Menezes Franco ◽  
Samara Carbone ◽  
Luciana Varanda Rizzo ◽  
Djacinto Aparecido Monteiro dos Santos ◽  
...  

Biomass burning emissions in Amazonia changes the atmospheric composition and aerosol properties during the dry season. We investigated fine-mode aerosol chemical composition and optical properties at an intensive field experiment...


2021 ◽  
Vol 13 (14) ◽  
pp. 2682
Author(s):  
Yang Ou ◽  
Lei Li ◽  
Zhengqiang Li ◽  
Ying Zhang ◽  
Oleg Dubovik ◽  
...  

Pollution haze is a frequent phenomenon in the North China Plain (NCP) appearing during winter when the aerosol is affected by various pollutant sources and has complex distribution of the aerosol properties, while different aerosol components may have various critical effects on air quality, human health and radiative balance. Therefore, large-scale and accurate aerosol components characterization is urgently and highly desirable but hardly achievable at the regional scale. In this respect, directional and polarimetric remote sensing observations have great potential for providing information about the aerosol components. In this study, a state-of-the-art GRASP/Component approach was employed for attempting to characterize aerosol components in the NCP using POLDER/PARASOL satellite observations. The analysis was done for January 2012 in Beijing (BJ) and Shanxi (SX). The results indicate a peak of the BC mass concentration in an atmospheric column of 82.8 mg/m2 in the SX region, with a mean of 29.2 mg/m2 that is about four times higher than one in BJ (8.9 mg/m2). The mean BrC mass concentrations are, however, higher in BJ (up to ca. 271 mg/m2) than that in SX, which can be attributed to a higher anthropogenic emission. The mean amount of fine ammonium sulfate-like particles observed in the BJ region was three times lower than in SX (131 mg/m2). The study also analyzes meteorological and air quality data for characterizing the pollution event in BJ. During the haze episode, the results suggest a rapid increase in the fine mode aerosol volume concentration associated with a decrease of a scale height of aerosol down to 1500 m. As expected, the values of aerosol optical depth (AOD), absorbing aerosol optical depth (AAOD) and fine mode aerosol optical depth (AODf) are much higher on hazy days. The mass fraction of ammonium sulfate-like aerosol increases from about 13% to 29% and mass concentration increases from 300 mg/m2 to 500 mg/m2. The daily mean PM2.5 concentration and RH independently measured during these reported pollution episodes reach up to 425 g/m3 and 80% correspondingly. The monthly mean mass concentrations of other aerosol components in the BJ are found to be in agreement with the results of previous research works. Finally, a preliminary comparison of these remote sensing derived results with literature and in situ PM2.5 measurements is also presented.


2021 ◽  
Author(s):  
Christiane Voigt ◽  
Jos Lelieveld ◽  
Hans Schlager ◽  
Johannes Schneider ◽  
Daniel Sauer ◽  
...  

<p>Worldwide regulations to control the COVID-19 pandemic caused significant reductions in ground and airborne transportation in spring 2020. This unprecedented situation provided the unique opportunity to directly measure the less perturbed atmosphere, notably near the tropopause, and derive the effects of anthropogenic emissions on atmospheric composition, aerosol, clouds and climate. These changes were investigated during the BLUESKY experiment by the two research aircraft HALO and the DLR Falcon, satellite observations and models. From 16 May to 9 June 2020, the two research aircraft performed 20 flights over Europe and the North Atlantic. Profiles of trace species were measured with an advanced in-situ trace gas, aerosol and cloud payload from the boundary layer to 14 km altitude. Here, we present an overview and selected highlights of the BLUESKY experiment. Continental aerosol profiles show significant reductions in aerosol mass in the boundary layer. The reduced aerosol optical thickness above Germany has also been detected by MODIS and its impact on the colour of the sky is investigated. A specific focus was the detection of aerosol and cirrus changes caused by up to 90% reductions in air traffic. We find reductions in fine mode aerosol in the UTLS at various levels compared to CARIBIC data. In addition, we derive reductions in contrail and cirrus cover using passive and active remote sensing from satellite combined with cloud modeling. The comprehensive data set acquired during the 2020 lockdown period allows better understanding and constraining the anthropogenic influence on the composition of the atmosphere and its impacts on air quality and climate.</p>


2020 ◽  
Vol 86 (12) ◽  
pp. 767-774
Author(s):  
Wei Chen ◽  
Ge Song ◽  
Haozhong Wang ◽  
Haimeng Zhao ◽  
Jianfang Zhu ◽  
...  

Sky polarization patterns are a relatively new and interesting field of polarized remote sensing. However, most current research mainly focuses on Rayleigh scattering or different conditions of aerosol optical depth. In this study, the sky downward polarization patterns are calculated for both degree of linear polarization and angle of polarization with scattering and absorbing aerosol situations. When coarse-mode aerosol changes from scattering to absorbing, the decreasing trend in the sky downward degree-of-linear-polarization largely slows down when aerosol optical depth increases. For fine-mode aerosol, on the other hand, the change of pattern is not sensitive to the absorbing property of aerosol. Sky downward angle-of-polarization patterns for different levels of aerosol optical depth and aerosol modes are similar, with little change. The results suggest that in order to accurately use sky polarization for remote sensing or bionic navigation, it is necessary to characterize aerosol microphysical properties first, especially when coarse absorbing aerosol exists.


2020 ◽  
Vol 13 (10) ◽  
pp. 5303-5317
Author(s):  
Dmitry M. Kabanov ◽  
Christoph Ritter ◽  
Sergey M. Sakerin

Abstract. In this work, hourly averaged sun photometer data from Barentsburg and Ny-Ålesund, both located on Spitsbergen in the European Arctic, are compared. Our data set comprises the years from 2002 to 2018 with overlapping measurements from both sites during the period from 2011 to 2018. For more turbid periods (aerosol optical depth, AOD, τ0.5>0.1), we found that Barentsburg is typically more polluted than Ny-Ålesund, especially in the shortwave spectrum. However, the diurnal variation in the AOD is highly correlated. Next, τ was divided into a fine and coarse mode. It was found that the fine-mode aerosol optical depth generally dominates and also shows a larger interannual than seasonal variation. The fine-mode optical depth is in fact largest in spring during the Arctic haze period. Overall the aerosol optical depth seems to decrease (at 500 nm the fine-mode optical depth decreased by 0.016 over 10 years), although this is hardly statistically significant.


2020 ◽  
Author(s):  
Dmitry M. Kabanov ◽  
Christoph Ritter ◽  
Sergey M. Sakerin

Abstract. In this work hourly averaged sun photometer data from the sites Barentsburg and Ny-Ålesund, both located in Spitsbergen in the European Arctic, are compared. Our data set comprises the years 2011 to 2017. We found for more turbid periods (aerosol optical depth τ0.5 > 0.1) that typically Barentsburg is more polluted than Ny-Ålesund, especially in the short wave spectrum. However, the diurnal variation of AOD is highly correlated. Next, τ was divided into a fine and coarse mode. It was found that generally the fine mode aerosol optical depth dominates and also shows a larger interannual as inner annual variation. Tau fine τf is in fact larger in spring during the Arctic Haze period. Overall the aerosol optical depth seems to decrease, although this is not statistically significant.


2020 ◽  
Vol 12 (5) ◽  
pp. 785 ◽  
Author(s):  
Tong Wu ◽  
Zhanqing Li ◽  
Jun Chen ◽  
Yuying Wang ◽  
Hao Wu ◽  
...  

Water uptake by aerosol particles alters its light-scattering characteristics significantly. However, the hygroscopicities of different aerosol particles are not the same due to their different chemical and physical properties. Such differences are explored by making use of extensive measurements concerning aerosol optical and microphysical properties made during a field experiment from December 2018 to March 2019 in Beijing. The aerosol hygroscopic growth was captured by the aerosol optical characteristics obtained from micropulse lidar, aerosol chemical composition, and aerosol particle size distribution information from ground monitoring, together with conventional meteorological measurements. Aerosol hygroscopicity behaves rather distinctly for mineral dust coarse-mode aerosol (Case I) and non-dust fine-mode aerosol (Case II) in terms of the hygroscopic enhancement factor, f β ( R H , λ 532 ) , calculated for the same humidity range. The two types of aerosols were identified by applying the polarization lidar photometer networking method (POLIPHON). The hygroscopicity for non-dust aerosol was much higher than that for dust conditions with the f β ( R H , λ 532 ) being around 1.4 and 3.1, respectively, at the relative humidity of 86% for the two cases identified in this study. To study the effect of dust particles on the hygroscopicity of the overall atmospheric aerosol, the two types of aerosols were identified and separated by applying the polarization lidar photometer networking method in Case I. The hygroscopic enhancement factor of separated non-dust fine-mode particles in Case I had been significantly strengthened, getting closer to that of the total aerosol in Case II. These results were verified by the hygroscopicity parameter, κ (Case I non-dust particles: 0.357 ± 0.024; Case II total: 0.344 ± 0.026), based on the chemical components obtained by an aerosol chemical speciation instrument, both of which showed strong hygroscopicity. It was found that non-dust fine-mode aerosol contributes more during hygroscopic growth and that non-hygroscopic mineral dust aerosol may reduce the total hygroscopicity per unit volume in Beijing.


2020 ◽  
Vol 57 (3) ◽  
pp. 030101
Author(s):  
高迦南 Gao Jianan ◽  
李丽萍 Li Liping ◽  
崔廷伟 Cui Tingwei ◽  
陈晨 Chen Chen

Sign in / Sign up

Export Citation Format

Share Document