scholarly journals Comment on “Isotopic evidence for dominant secondary production of HONO in near-ground wildfire plumes.”

2021 ◽  
Author(s):  
James Roberts

Abstract. Chai et al. recently published measurements of wild fire (WF) derived oxides of nitrogen (NOx) and nitrous acid (HONO) and their isotopic composition. The method used to sample NOx, collection in alkaline solution, has a known 1:1 interference from another reactive nitrogen compound, acetyl peroxynitrate (PAN). Although PAN is thermally unstable, subsequent reactions with nitrogen dioxide (NO2) in effect extend the lifetime of PAN many times longer than the initial decomposition reaction would indicate. This, coupled with the rapid and efficient formation of PAN in WF plumes, means the NOx measurements reported by Chai et al. were severely impacted by PAN. In addition, the model reactions in the original paper did not include the reactions of NO2 with hydroxyl radical (OH) to form nitric acid, nor the efficient reaction of larger organic radicals with nitric oxide to form organic nitrates (RONO2).

2021 ◽  
Vol 21 (22) ◽  
pp. 16793-16795
Author(s):  
James M. Roberts

Abstract. Chai et al. (2021) recently published measurements of wildfire-derived (WF) oxides of nitrogen (NOx) and nitrous acid (HONO) and their isotopic composition. The method used to sample NOx, collection in alkaline solution, has a known 1:1 interference from another reactive nitrogen compound, acetyl peroxynitrate (PAN). Although PAN is thermally unstable, subsequent reactions with nitrogen dioxide (NO2) in effect extend the lifetime of PAN many times longer than the initial decomposition reaction would indicate. This, coupled with the rapid and efficient formation of PAN in WF plumes, means the NOx measurements reported by Chai et al.​​​​​​​ were severely impacted by PAN. In addition, the model reactions in the original paper included neither the reactions of NO2 with hydroxyl radical (OH) to form nitric acid nor the efficient reaction of larger organic radicals with nitric oxide to form organic nitrates (RONO2).


1981 ◽  
Vol 44 (1) ◽  
pp. 28-32 ◽  
Author(s):  
JAY B. FOX ◽  
ROSEMARY N. FIDDLER ◽  
AARON E. WASSERMAN

Nitrite and ascorbate react to form nitric oxide at pH 5.5. In the initial stages of the reaction, seven intermediates can be identified spectrally and chromatographically; these include two colorless nitroso derivatives which contain 30–60% of the initial nitrite, two nitroso reductant derivatives absorbing at 345 and 412 nm, diketogulonic acid and two further decomposition products. None of the intermediates was paramagnetic; except for diketogulonic acid, all decomposed rapidly during or after isolation. Based on the order of appearance of the ultraviolet and visible absorption bands in the reaction mixtures, the observed characteristics of the intermediates, and the lack of organic radicals, a sequence is proposed for the initial steps in the oxidation of ascorbic acid by nitrous acid.


2006 ◽  
Vol 281 (18) ◽  
pp. 12546-12554 ◽  
Author(s):  
Haitao Li ◽  
Xiaoping Liu ◽  
Hongmei Cui ◽  
Yeong-Renn Chen ◽  
Arturo J. Cardounel ◽  
...  

Circulation ◽  
1998 ◽  
Vol 97 (23) ◽  
pp. 2352-2358 ◽  
Author(s):  
Johannes Zanzinger ◽  
Jürgen Czachurski ◽  
Horst Seller

Biochemistry ◽  
2007 ◽  
Vol 46 (13) ◽  
pp. 3952-3965 ◽  
Author(s):  
Hauh-Jyun Candy Chen ◽  
Chia-Jong Hsieh ◽  
Li-Ching Shen ◽  
Chia-Ming Chang

1961 ◽  
Vol 39 (12) ◽  
pp. 2549-2555 ◽  
Author(s):  
Otto P. Strausz ◽  
Harry E. Gunning

The reaction of NO with Hg 6(3P1) atoms has been studied under static conditions at 30°, over the pressure range 1–286 mm. The products were found to be N2, N2O, and higher oxides of nitrogen. At NO pressures exceeding 4 mm, the total rate of formation of N2+N2O was constant, while the ratio N2O/N2 increased linearly with the substrate pressure. The rate was found to vary directly with the first power of the intensity at 2537 Å, and a value of 1.9 × 10−3 moles/einstein was established for the quantum yield of N2 + N2O production. In the proposed mechanism, reaction is attributed to the decomposition of an energy-rich dimer, (NO)2*, which is formed by the collision of electronically excited (4II) NO molecules with those in the ground state. The (NO)2* species is assumed to decompose by the steps: (NO)2* → N2 + O2 and (NO)2* + NO → N2O + NO2. The mechanism satisfactorily explains the observed behavior of the system.


Sign in / Sign up

Export Citation Format

Share Document