scholarly journals Evaluation of the daytime tropospheric loss of 2-methylbutanal

2021 ◽  
Author(s):  
María Asensio ◽  
María Antiñolo ◽  
Sergio Blázquez ◽  
José Albaladejo ◽  
Elena Jiménez

Abstract. Saturated aldehydes, e.g. 2-methylbutanal (2MB, CH3CH2CH(CH3)C(O)H), are emitted into the atmosphere by several biogenic sources. The first step in the daytime atmospheric degradation of 2MB involves gas-phase reactions initiated by hydroxyl (OH) radicals, chlorine (Cl) atoms and/or sunlight. In this work, we report the rate coefficients for the gas-phase reaction of 2MB with OH (kOH) and Cl (kCl) together with the photolysis rate coefficient (J) in the ultraviolet solar actinic region in Valencia (Spain) at different times of the day. The temperature dependence of kOH was described in the 263–353 K range by the following Arrhenius expression: kOH(T)=(8.88±0.41)×10-12 exp[(331±14)/T] cm3 molecule-1 s-1. At 298 K, the reported kOH and kCl are (2.68±0.07)×10-11 cm3 molecule-1 s-1 and (2.16±0.16)×10-11 cm3 molecule-1 s-1. Identification and quantification of the gaseous products of the Cl-reaction and those from the photodissociation of 2MB were carried out in a smog chamber by different techniques (Fourier transform infrared spectroscopy, proton transfer time-of-flight mass spectrometry, and gas chromatography coupled to mass spectrometry). The formation and size distribution of secondary organic aerosols formed in the Cl-reaction was monitored by a fast mobility particle sizer spectrometer. A discussion on the relative importance of the first step in the daytime atmospheric degradation of 2MB is presented together with the impact of the degradation products in marine atmospheres.

Atmosphere ◽  
2020 ◽  
Vol 11 (7) ◽  
pp. 715
Author(s):  
María Antiñolo ◽  
María Asensio ◽  
José Albaladejo ◽  
Elena Jiménez

The gas-phase reaction between trans-2-methyl-2-butenal and chlorine (Cl) atoms has been studied in a simulation chamber at 298 ± 2 K and 760 ± 5 Torr of air under free-NOx conditions. The rate coefficient of this reaction was determined as k = (2.45 ± 0.32) × 10−10 cm3 molecule−1 s−1 by using a relative method and Fourier transform infrared spectroscopy. In addition to this technique, gas chromatography coupled to mass spectrometry and proton transfer time-of-flight mass spectrometry were used to detect and monitor the time evolution of the gas-phase reaction products. The major primary reaction product from the addition of Cl to the C-3 of trans-2-methyl-2-butenal was 3-chloro-2-butanone, with a molar yield (YProd) of (52.5 ± 7.3)%. Acetaldehyde (Y = (40.8 ± 0.6)%) and HCl were also identified, indicating that the H-abstraction by Cl from the aldehyde group is a reaction pathway as well. Secondary organic aerosol (SOA) formation was investigated by using a fast mobility particle sizer spectrometer. The SOA yield in the Cl + trans-2-methyl-2-butenal reaction is reported to be lower than 2.4%, thus its impact can be considered negligible. The atmospheric importance of the titled reaction is similar to the corresponding OH reaction in areas with high Cl concentration.


2016 ◽  
Vol 119 (1) ◽  
pp. 5-18
Author(s):  
Ádám Illés ◽  
Mária Farkas ◽  
Gábor László Zügner ◽  
Gyula Novodárszki ◽  
Magdolna Mihályi ◽  
...  

2011 ◽  
Vol 11 (1) ◽  
pp. 2377-2405 ◽  
Author(s):  
M. E. Davis ◽  
J. B. Burkholder

Abstract. Rate coefficients, k, for the gas-phase reaction of the OH radical with (Z)-3-hexen-1-ol ((Z)-CH3CH2CH=CHCH2CH2OH). (k1), 1-penten-3-ol (CH3CH2CH(OH)CH=CH2) (k2), (E)-2-penten-1-ol ((E)-CH3CH2CH=CHCH2OH) (k3), and (E)-2-hexen-1-ol ((E)-CH3CH2CH2CH=CHCH2OH) (k4), unsaturated alcohols that are emitted into the atmosphere following vegetation wounding, are reported. Rate coefficients were measured under pseudo-first-order conditions in OH over the temperature range 243–404 K at pressures between 20 and 100 Torr (He) using pulsed laser photolysis (PLP) to produce OH radicals and laser induced fluorescence (LIF) to monitor the OH temporal profile. The obtained rate coefficients were independent of pressure with negative temperature dependences that are well described by the Arrhenius expressions k1(T) = (1.3 ± 0.1) × 10−11 exp[(580 ± 10)/T]; k1(297K) = (1.06 ± 0.12) × 10−10 k2(T) = (6.8 ± 0.7) × 10−12 exp[(690 ± 20)/T]; k2(297K) = (7.12 ± 0.73) × 10−11 k3(T) = (6.8 ± 0.8) × 10−12 exp[(680 ± 20)/T]; k3(297K) = (6.76 ± 0.70) × 10−11 k4(T) = (5.4 ± 0.6) × 10−12 exp[(690 ± 20)/T]; k4(297K) = (6.15 ± 0.75) × 10−11 (in units of cm3 molecule−1 s−1). The quoted uncertainties are at the 2σ (95% confidence) level and include estimated systematic errors. The rate coefficients obtained in this study are compared with literature values where possible.


2021 ◽  
Author(s):  
María Asensio ◽  
Sergio Blázquez ◽  
María Antiñolo ◽  
José Albadalejo ◽  
Elena Jiménez

<p>The biogenic oxygenated volatile compound 2-methylbutanal (2MB) is emitted into the low atmosphere from several natural sources such as microbiological processes, wildland fires, or emissions from vegetation<sup>1</sup>. Moreover, some industrial operations also generate 2MB<sup>2</sup>. During the day, the oxidation of 2MB can be initiated by sunlight, hydroxyl (OH) radicals or chlorine (Cl) atoms in marine atmospheres. Up to date, gas-phase kinetics of OH with 2MB has only been studied at room temperature<sup>3</sup>. The photolysis rate coefficients (<em>J</em>) of 2MB initiated by sunlight have also been reported<sup>4</sup>. However, there is no available data for the reaction of Cl atoms with 2MB and the photolysis products.</p><p>In this work, the photolysis rate coefficient (<em>J</em>) of 2MB has been measured using a solar simulator in a Pyrex cell coupled to a Fourier Transform Infrared (FTIR) spectrometer to monitor the loss of 2MB. Moreover, the gas-phase kinetics of the reaction of 2MB with Cl (<em>k</em><sub>Cl</sub>) and OH (<em>k</em><sub>OH</sub>) have been investigated to evaluate the contribution of these homogeneous degradation routes to the total loss of 2MB in the atmosphere. All the kinetic experiments were carried out under free-NO<sub>x</sub> conditions (simulating a clean atmosphere). Regarding the relative kinetic study on the Cl-reaction, an atmospheric simulation chamber coupled to a FTIR spectrometer was used at 298 K and 760 Torr <sup>5</sup> of air, whereas for the absolute kinetics of the OH-reaction, <em>k</em><sub>OH</sub> was determined as a function of temperature and pressure (T = 263-353 K and P = 50-600 Torr of helium) by using a pulsed laser photolysis-laser induced fluorescence system<sup>6</sup>. Finally, in addition to FTIR, gas chromatography coupled to mass spectrometry and proton transfer time-of-flight mass spectrometry were used to detect the gas-phase reaction products when 2MB was exposed to Cl and sunlight. The atmospheric implications will be discussed in terms of lifetimes and reactions products.</p><p><strong>REFERENCES:</strong> <strong>1</strong>. Szwajkowska-Michale, L., Busko, M., Lakomy, P., and Perkowski, J.: Determination of profiles of volatile metabolites produced by Trametes versicolor isolates antagonistic towards Armillaria spp. Sylwan. <strong>2018</strong>, 162, 499–508. <strong>2. </strong>Kolar, P.; Kastner, J. R. Low-Temperature Catalytic Oxidation of Aldehyde Mixtures Using Wood Fly Ash: Kinetics, Mechanism, and Effect of Ozone. Chemosphere. <strong>2010</strong>, 78 (9), 1110–1115. <strong>3. </strong>D’Anna, B.; Andresen, O.; Gefen, Z. and Nielsen, C.J.: Kinetic study of OH and NO<sub>3</sub> radical reactions with 14 aliphatic aldehydes. Phys.Chem.Chem.Phys. <strong>2001</strong>, 3, 3057-3063. <strong>4. </strong>Wenger, J.C.: Chamber Studies on the Photolysis of Aldehydes. Environmental Simulation Chambers: Application to Atmospheric Chemical Processes. <strong>2006. </strong>Nato Science Series: IV: Earth and Environmental Science, vol 62. Springer, Dordrecht. <strong>5. </strong>Antiñolo, M.; Asensio, M.; Albadalejo, J. and Jiménez E.: Gas-Phase Reaction of trans-2-methyl-2-butenal with Cl: Kinetics, Gaseous Products, and SOA Formation. Atmosphere <strong>2020</strong>, 11 (7), 715. <strong>6. </strong>Blázquez, S.; Antiñolo, M.; Nielsen, O. J.; Albadalejo, J. and Jiménez, E.: Reaction kinetics of (CF<sub>3</sub>)<sub>2</sub>CFCN with OH radicals as a function of temperature (278-358 K): A good replacement for greenhouse SF<sub>6</sub>? Chem.Phys.Lett. <strong>2017</strong>, 687, 297-302.</p>


2006 ◽  
Vol 8 (6) ◽  
pp. 728-736 ◽  
Author(s):  
Mihaela Albu ◽  
Ian Barnes ◽  
Karl H. Becker ◽  
Iulia Patroescu-Klotz ◽  
Raluca Mocanu ◽  
...  

2011 ◽  
Vol 11 (7) ◽  
pp. 3347-3358 ◽  
Author(s):  
M. E. Davis ◽  
J. B. Burkholder

Abstract. Rate coefficients, k, for the gas-phase reaction of the OH radical with (Z)-3-hexen-1-ol (Z)-CH3CH2CH = CHCH2CH2OH) (k1), 1-penten-3-ol (CH3CH2CH(OH)CH = CH2) (k2), (E)-2-penten-1-ol ((E)-CH3CH2CH = CHCH2OH) (k3), and (E)-2-hexen-1-ol ((E)-CH3CH2CH2CH = CHCH2OH) (k4), unsaturated alcohols that are emitted into the atmosphere following vegetation wounding, are reported. Rate coefficients were measured under pseudo-first-order conditions in OH over the temperature range 243–404 K at pressures between 20 and 100 Torr (He) using pulsed laser photolysis (PLP) to produce OH radicals and laser induced fluorescence (LIF) to monitor the OH temporal profile. The obtained rate coefficients were independent of pressure with negative temperature dependences that are well described by the Arrhenius expressions k1(T) = (1.3 ± 0.1) × 10−11 exp[(580 ± 10)/T]; k1(297 K) = (1.06 ± 0.12) × 10−10 k2(T) = (6.8 ± 0.7) × 10−12 exp[(690 ± 20)/T]; k2(297 K) = (7.12 ± 0.73) × 10−11 k3(T) = (6.8 ± 0.8) × 10−12 exp[(680 ± 20)/T]; k3(297 K) = (6.76 ± 0.70) × 10−11 k4(T) = (5.4 − 0.6) × 10−12 exp[(690 ± 20)/T]; k4(297 K) = (6.15 ± 0.75) × 10−11 (in units of cm3 molecule−1 s−1). The quoted uncertainties are at the 2σ (95% confidence) level and include estimated systematic errors. The rate coefficients obtained in this study are compared with literature values where possible.


2007 ◽  
Vol 7 (13) ◽  
pp. 3559-3569 ◽  
Author(s):  
M. R. McGillen ◽  
C. J. Percival ◽  
G. Pieterse ◽  
L. A. Watson ◽  
D. E. Shallcross

Abstract. The reactivity of aromatic compounds is of great relevance to pure and applied chemical disciplines, yet existing methods for estimating gas-phase rate coefficients for their reactions with free radicals lack accuracy and universality. Here a novel approach is taken, whereby strong relationships between rate coefficients of aromatic hydrocarbons and a Randić-type topological index are investigated, optimized and developed into a method which requires no specialist software or computing power. Measured gas-phase rate coefficients for the reaction of aromatic hydrocarbons with OH radicals were correlated with a calculated Randić-type index, and optimized by including a term for side chain length. Although this method is exclusively for use with hydrocarbons, it is more diverse than any single existing methodology since it incorporates alkenylbenzenes into correlations, and can be extended towards other radical species such as O(3P) (and tentatively NO3, H and Cl). A comparison (with species common to both techniques) is made between the topological approach advocated here and a popular approach based on electrophilic subsituent constants, where it compares favourably. A modelling study was carried out to assess the impact of using estimated rate coefficients as opposed to measured data in an atmospheric model. The difference in model output was negligible for a range of NOx concentrations, which implies that this method has utility in complex chemical models. Strong relationships (e.g. for OH, R2=0.96) between seemingly diverse compounds including benzene, multisubstituted benzenes with saturated, unsaturated, aliphatic and cyclic substitutions and the nonbenzenoid aromatic, azulene suggests that the Randić-type index presented here represents a new and effective way of describing aromatic reactivity, based on a quantitative structure-activity relationship (QSAR).


2007 ◽  
Vol 7 (1) ◽  
pp. 2961-2989
Author(s):  
M. R. McGillen ◽  
C. J. Percival ◽  
G. Pieterse ◽  
L. A. Watson ◽  
D. E. Shallcross

Abstract. The reactivity of aromatic compounds is of great relevance to pure and applied chemical disciplines, yet existing methods for estimating gas-phase rate coefficients for their reactions with free radicals lack accuracy and universality. Here a novel approach is taken, whereby strong relationships between rate coefficients of aromatic hydrocarbons and a Randić-type topological index are investigated, optimized and developed into a method which requires no specialist software or computing power. Measured gas-phase rate coefficients for the reaction of aromatic hydrocarbons with OH radicals were correlated with a calculated Randić-type index, and optimized by including a term for side chain length. Although this method is exclusively for use with hydrocarbons, it is more diverse than any single existing methodology since it incorporates alkenylbenzenes into correlations, and can be extended towards other radical species such as O(3P) (and tentatively NO3, H and Cl). A comparison (with species common to both techniques) is made between the topological approach advocated here and a popular approach based on electrophilic subsituent constants, where it compares favourably. A modelling study was carried out to assess the impact of using estimated rate coefficients as opposed to measured data in an atmospheric model. The difference in model output was negligible for a range of NOx concentrations, which implies that this method has utility in complex chemical models. Strong relationships (e.g.~for OH, R2 = 0.96) between seemingly diverse compounds including benzene, multisubstituted benzenes with saturated, unsaturated, aliphatic and cyclic substitutions and the nonbenzenoid aromatic, azulene suggests that the Randić-type index presented here represents a new and effective way of describing aromatic reactivity, based on a quantitative structure-activity relationship (QSAR).


2021 ◽  
Author(s):  
Claudiu Roman ◽  
Cecilia Arsene ◽  
Iustinian Gabriel Bejan ◽  
Romeo-Iulian Olariu

Abstract. The Environmental Simulation Chamber made of Quartz from the University “Alexandru Ioan Cuza” from Iasi (ESC-Q-UAIC), Romania, was used to investigate for the first time the gas-phase reaction rate coefficients for four nitrocatechols towards OH radicals under simulated atmospheric conditions. Employing relative rate technique at a temperature of 298 ± 2 K and total air pressure of 1 atm, the obtained rate coefficients (in 10−12 cm3×s−1) were as followed: k3NCAT = (3.41 ± 0.37) for 3-nitrocatechol, k4NCAT = (1.27 ± 0.19) for 4-nitrocatechol, k5M3NCAT = (5.55 ± 0.45) for 5-methyl-3-nitrocatechol and k4M5NCAT = (0.92 ± 0.14) for 4-methyl-5-nitrocatechol. For the investigated compounds the photolysis rates in the actinic region, scaled to atmospheric relevant conditions, were evaluated as well. In this case the photolysis rate coefficient values were obtained only for 3-nitrocatechol and 5-methyl-3-nitrocatechol: J3NCAT = (3.06 ± 0.16) × 10−4 s−1 and J5M3NCAT = (2.14 ± 0.18) × 10−4 s−1, respectively. Considering the obtained results our study suggests that photolysis may be the main degradation process for 3-nitrocatechol and 5-methyl-3-nitrocatechol in the atmosphere. Results are discussed in terms of the reactivity of the investigated four nitrocatechols towards OH-radical initiated oxidation and their structural features. The rate coefficient values are also compared with those estimated from the structure-activity relationship for monocyclic aromatic hydrocarbons. Additional comparison with similar compounds is also presented underlining the implications towards possible degradation pathways and atmospheric behavior.


Sign in / Sign up

Export Citation Format

Share Document