scholarly journals Identifying Chemical Aerosol Signatures using Optical Suborbital Observations: How much can optical properties tell us about aerosol composition?

2021 ◽  
Author(s):  
Meloë S. F. Kacenelenbogen ◽  
Qian Tan ◽  
Sharon P. Burton ◽  
Otto P. Hasekamp ◽  
Karl D. Froyd ◽  
...  

Abstract. Improvements in air quality and Earth’s climate predictions require improvements of the aerosol speciation in chemical transport models, using observational constraints. Aerosol speciation (e.g., organic aerosols, black carbon, sulfate, nitrate, ammonium, dust or sea salt) is typically determined using in situ instrumentation. Continuous, routine surface network aerosol composition measurements are not uniformly widespread over the globe. Satellites, on the other hand, can provide a maximum coverage of the horizontal and vertical atmosphere but observe aerosol optical properties (and not aerosol speciation) based on remote sensing instrumentation. Combinations of satellite-derived aerosol optical properties can inform on air mass aerosol types (AMTs e.g., clean marine, dust, polluted continental). However, these AMTs are subjectively defined, might often be misclassified and are hard to relate to the critical parameters that need to be refined in models. In this paper, we derive AMTs that are more directly related to sources and hence to speciation. They are defined, characterized, and derived using simultaneous in situ gas-phase, chemical and optical instruments on the same aircraft during the Study of Emissions and Atmospheric Composition, Clouds, and Climate Coupling by Regional Surveys (SEAC4RS, US, summer of 2013). First, we prescribe well-informed AMTs that display distinct aerosol chemical and optical signatures to act as a training AMT dataset. These in situ observations reduce the errors and ambiguities in the selection of the AMT training dataset. We also investigate the relative skill of various combinations of aerosol optical properties to define AMTs and how much these optical properties can capture dominant aerosol speciation. We find distinct optical signatures for biomass burning (from agricultural or wildfires), biogenic and dust-influence AMTs. Useful aerosol optical properties to characterize these signatures are the extinction angstrom exponent (EAE), the single scattering albedo, the difference of single scattering albedo in two wavelengths, the absorption coefficient, the absorption angstrom exponent (AAE), and the real part of the refractive index (RRI). We find that all four AMTs studied when prescribed using mostly airborne in situ gas measurements, can be successfully extracted from at least three combinations of airborne in situ aerosol optical properties (e.g., EAE, AAE and RRI) over the US during SEAC4RS. However, we find that the optically based classifications for BB from agricultural fires and polluted dust include a large percentage of misclassifications that limit the usefulness of results relating to those classes. The technique and results presented in this study are suitable to develop a representative, robust and diverse source-based AMT database. This database could then be used for widespread retrievals of AMTs using existing and future remote sensing suborbital instruments/networks. Ultimately, it has the potential to provide a much broader observational aerosol data set to evaluate chemical transport and air quality models than is currently available by direct in situ measurements. This study illustrates how essential it is to explore existing airborne datasets to bridge chemical and optical signatures of different AMTs, before the implementation of future spaceborne missions (e.g., the next generation of Earth Observing System (EOS) satellites addressing Aerosol, Cloud, Convection and Precipitation (ACCP) designated observables).

2008 ◽  
Vol 8 (17) ◽  
pp. 5161-5186 ◽  
Author(s):  
R. M. Garland ◽  
H. Yang ◽  
O. Schmid ◽  
D. Rose ◽  
A. Nowak ◽  
...  

Abstract. The scattering and absorption of solar radiation by atmospheric aerosols is a key element of the Earth's radiative energy balance and climate. The optical properties of aerosol particles are, however, highly variable and not well characterized, especially near newly emerging mega-cities. In this study, aerosol optical properties were measured at a rural site approximately 60 km northwest of the mega-city Guangzhou in southeast China. The measurements were part of the PRIDE-PRD2006 intensive campaign, covering the period of 1–30 July 2006. Scattering and absorption coefficients of dry aerosol particles with diameters up to 10 μm (PM10) were determined with a three-wavelength integrating nephelometer and with a photoacoustic spectrometer, respectively. Averaged over the measurement campaign (arithmetic mean ± standard deviation), the total scattering coefficients were 200±133 Mm−1 (450 nm), 151±103 Mm−1 (550 nm) and 104±72 Mm−1 (700 nm) and the absorption coefficient was 34.3±26.5 Mm−1 (532 nm). The average Ångström exponent was 1.46±0.21 (450 nm/700 nm) and the average single scattering albedo was 0.82±0.07 (532 nm) with minimum values as low as 0.5. The low single scattering albedo values indicate a high abundance, as well as strong sources, of light absorbing carbon (LAC). The ratio of LAC to CO concentration was highly variable throughout the campaign, indicating a complex mix of different combustion sources. The scattering and absorption coefficients, as well as the Ångström exponent and single scattering albedo, exhibited pronounced diurnal cycles, which can be attributed to boundary layer mixing effects and enhanced nighttime emissions of LAC (diesel soot from regulated truck traffic). The daytime average mid-visible single scattering albedo of 0.87 appears to be more suitable for climate modeling purposes than the 24-h average of 0.82, as the latter value is strongly influenced by fresh emissions into a shallow nocturnal boundary layer. In spite of high photochemical activity during daytime, we found no evidence for strong local production of secondary aerosol mass. The average mass scattering efficiencies with respect to PM10 and PM1 concentrations derived from particle size distribution measurements were 2.8 m2 g−1 and 4.1 m2 g−1, respectively. The Ångström exponent exhibited a wavelength dependence (curvature) that was related to the ratio of fine and coarse particle mass (PM1/PM10) as well as the surface mode diameter of the fine particle fraction. The results demonstrate consistency between in situ measurements and a remote sensing formalism with regard to the fine particle fraction and volume mode diameter, but there are also systematic deviations for the larger mode diameters. Thus we suggest that more data sets from in situ measurements of aerosol optical parameters and particle size distributions should be used to evaluate formalisms applied in aerosol remote sensing. Moreover, we observed a negative correlation between single scattering albedo and backscatter fraction, and we found that it affects the impact that these parameters have on aerosol radiative forcing efficiency and should be considered in model studies of the PRD and similarly polluted mega-city regions.


2019 ◽  
Vol 19 (14) ◽  
pp. 9181-9208 ◽  
Author(s):  
Kristina Pistone ◽  
Jens Redemann ◽  
Sarah Doherty ◽  
Paquita Zuidema ◽  
Sharon Burton ◽  
...  

Abstract. The total effect of aerosols, both directly and on cloud properties, remains the biggest source of uncertainty in anthropogenic radiative forcing on the climate. Correct characterization of intensive aerosol optical properties, particularly in conditions where absorbing aerosol is present, is a crucial factor in quantifying these effects. The southeast Atlantic Ocean (SEA), with seasonal biomass burning smoke plumes overlying and mixing with a persistent stratocumulus cloud deck, offers an excellent natural laboratory to make the observations necessary to understand the complexities of aerosol–cloud–radiation interactions. The first field deployment of the NASA ORACLES (ObseRvations of Aerosols above CLouds and their intEractionS) campaign was conducted in September of 2016 out of Walvis Bay, Namibia. Data collected during ORACLES-2016 are used to derive aerosol properties from an unprecedented number of simultaneous measurement techniques over this region. Here, we present results from six of the eight independent instruments or instrument combinations, all applied to measure or retrieve aerosol absorption and single-scattering albedo. Most but not all of the biomass burning aerosol was located in the free troposphere, in relative humidities typically ranging up to 60 %. We present the single-scattering albedo (SSA), absorbing and total aerosol optical depth (AAOD and AOD), and absorption, scattering, and extinction Ångström exponents (AAE, SAE, and EAE, respectively) for specific case studies looking at near-coincident and near-colocated measurements from multiple instruments, and SSAs for the broader campaign average over the month-long deployment. For the case studies, we find that SSA agrees within the measurement uncertainties between multiple instruments, though, over all cases, there is no strong correlation between values reported by one instrument and another. We also find that agreement between the instruments is more robust at higher aerosol loading (AOD400>0.4). The campaign-wide average and range shows differences in the values measured by each instrument. We find the ORACLES-2016 campaign-average SSA at 500 nm (SSA500) to be between 0.85 and 0.88, depending on the instrument considered (4STAR, AirMSPI, or in situ measurements), with the interquartile ranges for all instruments between 0.83 and 0.89. This is consistent with previous September values reported over the region (between 0.84 and 0.90 for SSA at 550nm). The results suggest that the differences observed in the campaign-average values may be dominated by instrument-specific spatial sampling differences and the natural physical variability in aerosol conditions over the SEA, rather than fundamental methodological differences.


2019 ◽  
Author(s):  
Kristina Pistone ◽  
Jens Redemann ◽  
Sarah Doherty ◽  
Paquita Zuidema ◽  
Sharon Burton ◽  
...  

Abstract. The total effect of aerosols, both directly and on cloud properties, remains the biggest source of uncertainty in anthropogenic radiative forcing on the climate. Correct characterization of intensive aerosol optical properties, particularly in conditions where absorbing aerosol is present, is a crucial factor in quantifying these effects. The Southeast Atlantic Ocean (SEA), with seasonal biomass burning smoke plumes overlying and mixing with a persistent stratocumulus cloud deck, offers an excellent natural laboratory to make the observations necessary to understand the complexities of aerosol-cloud-radiation interactions. The first field deployment of the NASA ORACLES (ObseRvations of Aerosols above CLouds and their intEractionS) campaign was conducted in September of 2016 out of Walvis Bay, Namibia. Data collected during ORACLES-2016 are used to derive aerosol properties from an unprecedented number of simultaneous measurement techniques over this region. Here we present results from six of the eight independent instruments or instrument combinations, all applied to measure or retrieve aerosol absorption and single scattering albedo. Most but not all of the biomass-burning aerosol was located in the free troposphere, in relative humidities typically ranging up to 60 %. We present the single scattering albedo (SSA), absorbing and total aerosol optical depth (AOD and AAOD), and absorption, scattering, and extinction Ångström exponents (AAE, SAE, EAE) for specific case studies looking at near-coincident and -colocated measurements from multiple instruments, and SSAs for the broader campaign average over the monthlong deployment. For the case studies, we find that SSA agrees within the measurement uncertainties between multiple instruments, though, over all cases, there is no strong correlation between values reported by one instrument and another. We also find that agreement between the instruments is more robust at higher aerosol loading (AOD400 > 0.4). The campaign-wide average and range shows differences in the values measured by each instrument. We find the ORACLES-2016 campaign-average SSA at 500 nm (SSA500) to be between 0.85 and 0.88, depending on the instrument considered (4STAR, AirMSPI, or in situ measurements), with the inter-quartile ranges for all instruments between 0.83 and 0.89. This is consistent with previous September values reported over the region (between 0.84 and 0.90 for SSA at 550 nm). The results suggest that the differences observed in the campaign-average values may be dominated by instrument-specific spatial sampling differences and the natural physical variability in aerosol conditions over the SEA, rather than fundamental methodological differences.


2011 ◽  
Vol 11 (10) ◽  
pp. 29003-29054 ◽  
Author(s):  
A. R. Esteve ◽  
J. A. Ogren ◽  
P. J. Sheridan ◽  
E. Andrews ◽  
B. N. Holben ◽  
...  

Abstract. Aerosol optical properties were measured by NOAA's Airborne Aerosol Observatory over Bondville, Illinois, during more than two years using a light aircraft. Measured properties included total light scattering, backscattering, and absorption, while calculated parameters included aerosol optical depth (AOD), Ångström exponent, single-scattering albedo, hemispheric backscatter fraction, asymmetry parameter, and submicrometer mode fraction of scattering. The in-situ aircraft measurements are compared here with AERONET measurements and retrievals of the aerosol optical properties at the same location. The comparison reveals discrepancies between the aerosol properties retrieved from AERONET and from in-situ aircraft measurements. These discrepancies are smaller for the AOD, while the biggest discrepancies are for the single-scattering albedo, hemispheric backscatter fraction, and asymmetry parameter. Possible sources of discrepancy between the AOD measured by AERONET and the one calculated from the in-situ aircraft measurements are investigated. The largest portion of the AOD discrepancy is likely due to an incorrect adjustment to ambient RH of the scattering coefficient. Another significant part (along with uncertain nephelometer truncation corrections) may come from the possibility that there might be less aerosol below the lowest flight altitude or that the aircraft inlet excludes aerosol particles larger than 5–7 μm diameter.


2018 ◽  
Vol 18 (16) ◽  
pp. 11599-11622 ◽  
Author(s):  
Lauren Schmeisser ◽  
John Backman ◽  
John A. Ogren ◽  
Elisabeth Andrews ◽  
Eija Asmi ◽  
...  

Abstract. Given the sensitivity of the Arctic climate to short-lived climate forcers, long-term in situ surface measurements of aerosol parameters are useful in gaining insight into the magnitude and variability of these climate forcings. Seasonality of aerosol optical properties – including the aerosol light-scattering coefficient, absorption coefficient, single-scattering albedo, scattering Ångström exponent, and asymmetry parameter – are presented for six monitoring sites throughout the Arctic: Alert, Canada; Barrow, USA; Pallas, Finland; Summit, Greenland; Tiksi, Russia; and Zeppelin Mountain, Ny-Ålesund, Svalbard, Norway. Results show annual variability in all parameters, though the seasonality of each aerosol optical property varies from site to site. There is a large diversity in magnitude and variability of scattering coefficient at all sites, reflecting differences in aerosol source, transport, and removal at different locations throughout the Arctic. Of the Arctic sites, the highest annual mean scattering coefficient is measured at Tiksi (12.47 Mm−1), and the lowest annual mean scattering coefficient is measured at Summit (1.74 Mm−1). At most sites, aerosol absorption peaks in the winter and spring, and has a minimum throughout the Arctic in the summer, indicative of the Arctic haze phenomenon; however, nuanced variations in seasonalities suggest that this phenomenon is not identically observed in all regions of the Arctic. The highest annual mean absorption coefficient is measured at Pallas (0.48 Mm−1), and Summit has the lowest annual mean absorption coefficient (0.12 Mm−1). At the Arctic monitoring stations analyzed here, mean annual single-scattering albedo ranges from 0.909 (at Pallas) to 0.960 (at Barrow), the mean annual scattering Ångström exponent ranges from 1.04 (at Barrow) to 1.80 (at Summit), and the mean asymmetry parameter ranges from 0.57 (at Alert) to 0.75 (at Summit). Systematic variability of aerosol optical properties in the Arctic supports the notion that the sites presented here measure a variety of aerosol populations, which also experience different removal mechanisms. A robust conclusion from the seasonal cycles presented is that the Arctic cannot be treated as one common and uniform environment but rather is a region with ample spatiotemporal variability in aerosols. This notion is important in considering the design or aerosol monitoring networks in the region and is important for informing climate models to better represent short-lived aerosol climate forcers in order to yield more accurate climate predictions for the Arctic.


2018 ◽  
Author(s):  
Lauren Schmeisser ◽  
John Backman ◽  
John A. Ogren ◽  
Elisabeth Andrews ◽  
Eija Asmi ◽  
...  

Abstract. Given the sensitivity of the Arctic climate to short-lived climate forcers, long-term in-situ surface measurements of aerosol parameters are useful in gaining insight into the magnitude and variability of these climate forcings. Seasonality of aerosol optical properties, including aerosol light scattering coefficient, absorption coefficient, single scattering albedo, scattering Ångström exponent, and asymmetry parameter are presented for six monitoring sites throughout the Arctic: Alert, Canada; Barrow, USA; Pallas, Finland; Summit, Greenland; Tiksi, Russia; and Zeppelin Mountain, Ny-Ålesund, Svalbard, Norway. Results show annual variability in all parameters, though the seasonality of each aerosol optical property varies from site to site. There is a large diversity in magnitude and variability of scattering coefficient at all sites, reflecting differences in aerosol source, transport and removal at different locations throughout the Arctic. Of the Arctic sites, the highest annual mean scattering coefficient is measured at Tiksi (12.47 Mm−1) and the lowest annual mean scattering coefficient is measured at Summit (1.74 Mm−1). At most sites, aerosol absorption peaks in the winter and spring, and has a minimum throughout the Arctic in the summer, indicative of the Arctic haze phenomenon; however, nuanced variations in seasonalities suggest that this phenomenon is not identically observed in all regions of the Arctic. The highest annual mean absorption coefficient is measured at Pallas (0.48 Mm−1) and Summit has the lowest annual mean absorption coefficient (0.12 Mm−1). At the Arctic monitoring stations analyzed here, mean annual single scattering albedo ranges from 0.909–0.960 (at Pallas and Barrow, respectively), mean annual scattering Ångström exponent ranges from 1.04–1.80 (at Barrow and Summit, respectively), and mean asymmetry parameter ranges from 0.57–0.75 (at Alert and Summit, respectively). Systematic variability of aerosol optical properties in the Arctic supports the notion that the sites presented here measure a variety of aerosol populations, which also experience different removal mechanisms. A robust conclusion from the climatologies presented is that the Arctic cannot be treated as one common and uniform environment, but rather is a region with ample spatio-temporal variability in aerosols. This notion is important in considering the design or aerosol monitoring networks in the region, and is important for informing climate models to better represent short-lived aerosol climate forcers in order to yield more accurate climate predictions for the Arctic.


2012 ◽  
Vol 12 (12) ◽  
pp. 5647-5659 ◽  
Author(s):  
A. Leskinen ◽  
A. Arola ◽  
M. Komppula ◽  
H. Portin ◽  
P. Tiitta ◽  
...  

Abstract. We introduce a four-year (in 2006–2010) continuous data set of aerosol optical properties at Puijo in Kuopio, Finland. We study the annual and diurnal variation of the aerosol scattering and absorption coefficients, hemispheric backscattering fraction, scattering Ångström exponent, and single scattering albedo, whose median values over this period were 7.2 Mm−1 (at 550 nm), 1.0 Mm−1 (at 637 nm), 0.15, 1.93 (between 450 and 550 nm), and 0.85, respectively. The scattering coefficient peaked in the spring and autumn, being 2–4 times those in the summer and winter. An exception was the summer of 2010, when the scattering coefficient was elevated to ~300 Mm−1 by plumes from forest fires in Russia. The absorption coefficient peaked in the winter when soot-containing particles derived from biomass burning were present. The higher relative absorption coefficients resulted in lower single scattering albedo in winter. The optical properties varied also with wind direction and time of the day, indicating the effect of the local pollutant sources and the age of the particles. Peak values in the single scattering albedo were observed when the wind blew from a paper mill and from the sector without local pollutant sources. These observations were linked, respectively, to the sulphate-rich aerosol from the paper mill and the oxygenated organics in the aged aerosol, which both are known to increase the scattering characteristics of aerosols. Decreases in the single scattering albedo in the morning and afternoon, distinct in the summertime, were linked to the increased traffic density at these hours. The scattering and absorption coefficients of residential and long-range transported aerosol (two separate cloud events) were found to be decreased by clouds. The effect was stronger for the scattering than absorption, indicating preferential activation of the more hygroscopic aerosol with higher scattering characteristics.


2015 ◽  
Vol 15 (22) ◽  
pp. 33675-33730
Author(s):  
X. Xu ◽  
W. Zhao ◽  
Q. Zhang ◽  
S. Wang ◽  
B. Fang ◽  
...  

Abstract. The optical properties and chemical composition of PM1.0 (particulate with an aerodynamic diameter of less than 1.0 μm) particles in a suburban environment (Huairou) near the mega-city Beijing were measured during the HOPE-J3A (Haze Observation Project Especially for Jing-Jin-Ji Area) field campaign. The campaign covered the period November 2014 to January 2015 during the winter coal heating season. The average and standard deviations for the extinction, scattering, absorption coefficients, and the aerosol single scattering albedo (SSA) at λ = 470 nm during the measurement period were 201 ± 240, 164 ± 202, 37 ± 43 Mm-1, and 0.80 ± 0.08, respectively. The mean mass scattering (MSE) and absorption (MAE) efficiencies were 4.77 ± 0.01 and 0.87 ± 0.03 m2g-1, respectively. Highly time-resolved air pollution episodes clearly show the dramatic evolution of the PM1.0 size distribution, extensive optical properties (extinction, scattering, and absorption coefficients) and intensive optical properties (single scattering albedo and complex refractive index) during haze formation, development and decline. Time periods were classified into three different pollution levels (clear, slightly polluted, and polluted) for further analysis. It was found that: (1) The diurnal patterns of the aerosol extinction, scattering, absorption coefficients, and SSA differed for the three pollution classes. (2) The real and imaginary part of complex refractive index (CRI) increased, while the SSA decreased from clear to polluted days. (3) The relative contributions of organic and inorganic species to observed aerosol composition changed significantly from clear to polluted days: the organic mass fraction decreased (50 to 43 %) while the proportion of sulfates, nitrates, and ammonium increased strongly (34 to 44 %). (4) The fractional contribution of chemical components to extinction coefficients was calculated by using the modified IMPROVE algorithm. Organic mass was the largest contributor (58 %) to the total extinction of PM1.0. When the air quality deteriorated, the change of the relative contribution of sulfate aerosol to the total extinction was small, but the contribution of nitrate aerosol increased significantly (from 17 % on clear days to 23 % on polluted days). (5) The observed mass scattering efficiencies increased consistently with the pollution extent, however, the observed mass absorption efficiencies increased consistently with increasing mass concentration in slightly pollution conditions, but decreased under polluted conditions.


2020 ◽  
Author(s):  
Carolyn E. Jordan ◽  
Ryan M. Stauffer ◽  
Brian T. Lamb ◽  
Michael Novak ◽  
Antonio Mannino ◽  
...  

Abstract. This two-part study explores hyperspectral (300–700 nm) aerosol optical measurements obtained from in situ sampling methods employed during the May–June 2016 Korea United States – Ocean Color (KORUS-OC) cruise conducted in concert with the broader air quality campaign (KORUS-AQ). Part 1 focused on the hyperspectral measurement of extinction coefficients (σext) using the recently developed in situ Spectral Aerosol Extinction (SpEx) instrument and showed that 2nd order polynomials provided a better fit to the measured spectra than power law fits. Two dimensional mapping of the 2nd order polynomial coefficients (a1,a2) was used to explore the information content of the spectra. Part 2 expands on that work by applying a similar analytical approach to filter-based measurements of aerosol hyperspectral total absorption (σabs) and soluble absorption from filters extracted either with deionized water (σDI-abs) or methanol (σMeOH-abs). As was found for σext, 2nd order polynomials provided a better fit to all three absorption spectra sets. Averaging the measured σext from Part 1 over the filter sampling intervals in this work, hyperspectral single scattering albedo (ω) was calculated. Water-soluble aerosol composition from the DI extracts was used to examine relationships with the various measured optical properties. In particular, both σDI-abs(365 nm) and σMeOH-abs(365 nm) were found to be best correlated with oxalate (C2O42−), but elevated soluble absorption was found from two chemically and optically distinct populations of aerosols. The more photochemically aged aerosols of those two groups exhibited partial spectra (i.e., the longer wavelengths of the spectral range were below detection) while the less-aged aerosol of the other group exhibited complete spectra across the wavelength range. The chromophores of these groups may have derived from different sources and/or atmospheric processes, such that photochemical age may have been only one factor contributing to the differences in the observed spectra. The differences in the spectral properties of these groups was evident in (a1,a2) maps. The results of the two-dimensional mapping shown in Parts 1 and 2 suggest that this spectral characterization may offer new methods to relate in situ aerosol optical properties to their chemical and microphysical characteristics. However, 2nd order polynomials did not fully capture the evident features in the σabs and ω spectra, suggesting additional spectral analyses such as peak fitting will yield additional information. It is anticipated that future studies examining in situ aerosol hyperspectral properties will not only improve our ability to use optical data to characterize aerosol physicochemical properties, but that such in situ tools will be needed to validate hyperspectral remote sensors planned for space-based observing platforms.


Sign in / Sign up

Export Citation Format

Share Document