scholarly journals Stable water isotope signals in tropical ice clouds in the West African monsoon simulated with a regional convection-permitting model

2021 ◽  
Author(s):  
Andries Jan de Vries ◽  
Franziska Aemisegger ◽  
Stephan Pfahl ◽  
Heini Wernli

Abstract. Tropical ice clouds have an important influence on the Earth’s radiative balance. They often form as a result of tropical deep convection, which strongly affects the water budget of the tropical tropopause layer. Ice cloud formation involves complex interactions on various scales, which are not fully understood yet and lead to large uncertainties in climate predictions. In this study, we investigate the formation of tropical ice clouds related to deep convection in the West African monsoon, using stable water isotopes as tracers of moist atmospheric processes. We perform simulations using the regional isotope-enabled model COSMOiso with different resolutions and treatments of convection for the period of June–July 2016. First, we evaluate the ability of our simulations to represent the isotopic composition of monthly precipitation through comparison with GNIP observations, and the precipitation characteristics related to the monsoon evolution and convective storms based on insights from the DACCIWA field campaign in 2016. Next, a case study of a mesoscale convective system (MCS) explores the isotope signatures of tropical deep convection in atmospheric water vapour and ice. Convective updrafts within the MCS inject enriched ice into the upper troposphere leading to depletion of vapour within these updrafts due to the preferential condensation and deposition of heavy isotopes. Water vapour in downdrafts within the same MCS are enriched by non-fractionating sublimation of ice. In contrast to ice within the MCS core regions, ice in widespread cirrus shields is isotopically in approximate equilibrium with the ambient vapour, which is consistent with in situ formation of ice. These findings from the case study are supported by a statistical evaluation of isotope signals in the West African monsoon ice clouds. The following five key processes related to tropical ice clouds can be distinguished based on their characteristic isotope signatures: (1) convective lofting of enriched ice into the upper troposphere, (2) cirrus clouds that form in situ from ambient vapour under equilibrium fractionation, (3) sedimentation and sublimation of ice in the mixed-phase cloud layer in the vicinity of convective systems and underneath cirrus shields, (4) sublimation of ice in convective downdrafts that enriches the environmental vapour, and (5) the freezing of liquid water in the mixed-phase cloud layer at the base of convective updrafts. Importantly, the results show that convective systems strongly modulate the humidity budget and the isotopic composition of the lower tropical tropopause layer. They contribute to about 40 % of the total water and 60 % of HDO in the 175–125 hPa layer in the African monsoon region according to estimates based on our model simulations. Overall, this study demonstrates that isotopes can serve as useful tracers to disentangle the role of different processes in the Earth’s water cycle, including convective transport, the formation of ice clouds, and their impact on the tropical tropopause layer.

2007 ◽  
Vol 20 (15) ◽  
pp. 4014-4032 ◽  
Author(s):  
Benjamin Sultan ◽  
Serge Janicot ◽  
Philippe Drobinski

Abstract This study investigates the diurnal cycle of the West African monsoon and its seasonal modulation with particular focus on the monsoon onset period. A composite analysis around the monsoon onset date is applied to the 1979–2000 NCEP–DOE reanalysis and 40-yr ECMWF Re-Analysis (ERA-40) at 0000, 0600, 1200, and 1800 UTC. This study points out two independent modes describing the space–time variability of the diurnal cycle of low-level wind and temperature. While the first mode appears to belong to a gradual and seasonal pattern linked with the northward migration of the whole monsoon system, the second mode is characterized by more rapid time variations with a peak of both temperature and wind anomalies around the monsoon onset date. This latter mode is connected with the time pattern of a nocturnal jet reaching its highest values around the onset date. The diurnal cycle of dry and deep convection is also investigated through the same method. A distinct diurnal cycle of deep convection in the ITCZ is evidenced with a peak at 1200 UTC before the monsoon onset, and at 1800 UTC after the monsoon onset. Strong ascending motions associated with deep convection may generate a gravity wave that propagates northward and reaches the Saharan heat low region 12 h later. The diurnal cycle of the dry convection in the Saharan heat low is similar during the preonset and the postonset periods with a peak at night (0000 UTC) consistent with the nocturnal jet intensification. This convection is localized at 15° and 20°N before and after the monsoon onset, respectively. Both during the first rainy season in spring and the monsoon season in summer, the nocturnal jet brings moisture in the boundary layer north of the ITCZ favoring humidification and initiation of new convective cells, helping the northward progression of the ITCZ. At the end of the summer the southward return of the ITCZ is associated with the disappearance of the core of the monsoon jet. Despite a lot of similarities between the results obtained using NCEP–DOE and ERA-40 reanalyses, giving confidence in the significance of these results, some differences are identified, especially in the diurnal cycle of deep convection, which limit the interpretation of some of these results and highlight discrepancies in the reanalyses.


2016 ◽  
Vol 144 (4) ◽  
pp. 1571-1589 ◽  
Author(s):  
Rory G. J. Fitzpatrick ◽  
Caroline L. Bain ◽  
Peter Knippertz ◽  
John H. Marsham ◽  
Douglas J. Parker

Abstract Accurate prediction of the commencement of local rainfall over West Africa can provide vital information for local stakeholders and regional planners. However, in comparison with analysis of the regional onset of the West African monsoon, the spatial variability of the local monsoon onset has not been extensively explored. One of the main reasons behind the lack of local onset forecast analysis is the spatial noisiness of local rainfall. A new method that evaluates the spatial scale at which local onsets are coherent across West Africa is presented. This new method can be thought of as analogous to a regional signal against local noise analysis of onset. This method highlights regions where local onsets exhibit a quantifiable degree of spatial consistency (denoted local onset regions or LORs). It is found that local onsets exhibit a useful amount of spatial agreement, with LORs apparent across the entire studied domain; this is in contrast to previously found results. Identifying local onset regions and understanding their variability can provide important insight into the spatial limit of monsoon predictability. While local onset regions can be found over West Africa, their size is much smaller than the scale found for seasonal rainfall homogeneity. A potential use of local onset regions is presented that shows the link between the annual intertropical front progression and local agronomic onset.


2021 ◽  
Author(s):  
Christopher Johannes Diekmann ◽  
Matthias Schneider ◽  
Peter Knippertz ◽  
Andries Jan de Vries ◽  
Stephan Pfahl ◽  
...  

2008 ◽  
Vol 96 (1-2) ◽  
pp. 179-189 ◽  
Author(s):  
G. A. Dalu ◽  
M. Gaetani ◽  
M. Baldi

2010 ◽  
Vol 23 (21) ◽  
pp. 5557-5571 ◽  
Author(s):  
Sally L. Lavender ◽  
Christopher M. Taylor ◽  
Adrian J. Matthews

Abstract Recent observational studies have suggested a role for soil moisture and land–atmosphere coupling in the 15-day westward-propagating mode of intraseasonal variability in the West African monsoon. This hypothesis is investigated with a set of three atmospheric general circulation model experiments. 1) When soil moisture is fully coupled with the atmospheric model, the 15-day mode of land–atmosphere variability is clearly identified. Precipitation anomalies lead soil moisture anomalies by 1–2 days, similar to the results from satellite observations. 2) To assess whether soil moisture is merely a passive response to the precipitation, or an active participant in this mode, the atmospheric model is forced with a 15-day westward-propagating cycle of regional soil moisture anomalies based on the fully coupled mode. Through a reduced surface sensible heat flux, the imposed wet soil anomalies induce negative low-level temperature anomalies and increased pressure (a cool high). An anticyclonic circulation then develops around the region of wet soil, enhancing northward moisture advection and precipitation to the west. Hence, in a coupled framework, this soil moisture–forced precipitation response would provide a self-consistent positive feedback on the westward-propagating soil moisture anomaly and implies an active role for soil moisture. 3) In a final sensitivity experiment, soil moisture is again externally prescribed but with all intraseasonal fluctuations suppressed. In the absence of soil moisture variability there are still pronounced surface sensible heat flux variations, likely due to cloud changes, and the 15-day westward-propagating precipitation signal is still present. However, it is not as coherent as in the previous experiments when interaction with soil moisture was permitted. Further examination of the soil moisture forcing experiment in GCM experiment 2 shows that this precipitation mode becomes phase locked to the imposed soil moisture anomalies. Hence, the 15-day westward-propagating mode in the West African monsoon can exist independently of soil moisture; however, soil moisture and land–atmosphere coupling act to feed back on the atmosphere and further enhance and organize it.


2017 ◽  
Vol 145 (9) ◽  
pp. 3881-3900 ◽  
Author(s):  
Sara Q. Zhang ◽  
T. Matsui ◽  
S. Cheung ◽  
M. Zupanski ◽  
C. Peters-Lidard

Abstract This work assimilates multisensor precipitation-sensitive microwave radiance observations into a storm-scale NASA Unified Weather Research and Forecasting (NU-WRF) Model simulation of the West African monsoon. The analysis consists of a full description of the atmospheric states and a realistic cloud and precipitation distribution that is consistent with the observed dynamic and physical features. The analysis shows an improved representation of monsoon precipitation and its interaction with dynamics over West Africa. Most significantly, assimilation of precipitation-affected microwave radiance has a positive impact on the distribution of precipitation intensity and also modulates the propagation of cloud precipitation systems associated with the African easterly jet. Using an ensemble-based assimilation technique that allows state-dependent forecast error covariance among dynamical and microphysical variables, this work shows that the assimilation of precipitation-sensitive microwave radiances over the West African monsoon rainband enables initialization of storms. These storms show the characteristics of continental tropical convection that enhance the connection between tropical waves and organized convection systems.


Sign in / Sign up

Export Citation Format

Share Document