scholarly journals Photochemical Evolution of the 2013 California Rim Fire: Synergistic Impacts of Reactive Hydrocarbons and Enhanced Oxidants

2021 ◽  
Author(s):  
Glenn M. Wolfe ◽  
Thomas F. Hanisco ◽  
Heather L. Arkinson ◽  
Donald R. Blake ◽  
Armin Wisthaler ◽  
...  

Abstract. Large wildfires markedly alter regional atmospheric composition, but chemical complexity challenges model predictions of downwind impacts. Here, we elucidate key facets of gas-phase photochemistry and assess novel chemical processes via a case study of the 2013 California Rim Fire plume. Airborne in situ observations, acquired during the NASA Studies of Emissions, Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC4RS) mission, illustrate the evolution of volatile organic compounds (VOC), oxidants, and reactive nitrogen over 12 hours of atmospheric aging. Measurements show rapid formation of ozone and peroxyacyl nitrates (PNs), sustained peroxide production, and prolonged enhancements in oxygenated VOC and nitrogen oxides (NOx). Measurements and Lagrangian trajectories constrain a 0-D puff model that approximates plume photochemical history and provides a framework for evaluating key processes. Simulations examine the effects of 1) previously-unmeasured reactive VOC identified in recent laboratory studies, and 2) emissions and secondary production of nitrous acid (HONO). Inclusion of estimated unmeasured VOC leads to a 250 % increase in OH reactivity and a 70 % increase in radical production via oxygenated VOC photolysis. HONO amplifies radical cycling and serves as a downwind NOx source, although two different HONO production mechanisms (particulate nitrate photolysis and heterogeneous NO2 conversion) exhibit markedly different effects on ozone, NOx, and PNs. Analysis of radical initiation rates suggests that oxygenated VOC photolysis is a major radical source, exceeding HONO photolysis when averaged over the first 2 hours of aging. Ozone production chemistry transitions from VOC-sensitive to NOx-sensitive within the first hour of plume aging, with both peroxide and organic nitrate formation contributing significantly to radical termination. To simulate smoke plume chemistry accurately, models should simultaneously account for the full reactive VOC pool and all relevant oxidant sources.

2013 ◽  
Vol 13 (3) ◽  
pp. 6923-6969 ◽  
Author(s):  
G. Sarwar ◽  
J. Godowitch ◽  
B. Henderson ◽  
K. Fahey ◽  
G. Pouliot ◽  
...  

Abstract. We incorporate the recently developed Regional Atmospheric Chemistry Mechanism (version 2, RACM2) into the Community Multiscale Air Quality modeling system for comparison with the existing 2005 Carbon Bond mechanism with updated toluene chemistry (CB05TU). Compared to CB05TU, RACM2 enhances the domain-wide monthly mean hydroxyl radical concentrations by 46% and nitric acid by 26%. However, it reduces hydrogen peroxide by 2%, peroxyacetic acid by 94%, methyl hydrogen peroxide by 19%, peroxyacetyl nitrate by 40%, and organic nitrate by 41%. RACM2 predictions generally agree better with the observed data than the CB05TU predictions. RACM2 enhances ozone for all ambient levels leading to higher bias at low (< 60 ppbv) concentrations but improved performance at high (>70 ppbv) concentrations. The RACM2 ozone predictions are also supported by increased ozone production efficiency that agrees better with observations. Compared to CB05TU, RACM2 enhances the domain-wide monthly mean sulfate by 10%, nitrate by 6%, ammonium by 10%, anthropogenic secondary organic aerosols by 42%, biogenic secondary organic aerosols by 5%, and in-cloud secondary organic aerosols by 7%. Increased inorganic and organic aerosols with RACM2 agree better with observed data. While RACM2 enhances ozone and secondary aerosols by relatively large margins, control strategies developed for ozone or fine particles using the two mechanisms do not differ appreciably.


2019 ◽  
Author(s):  
William T. Morgan ◽  
James D. Allan ◽  
Stéphane Bauguitte ◽  
Eoghan Darbyshire ◽  
Michael J. Flynn ◽  
...  

Abstract. We present a range of airborne in-situ observations of biomass burning carbonaceous aerosol over tropical South America, including a case study of a large tropical forest wildfire and a series of regional survey flights across the Brazilian Amazon and Cerrado. The study forms part of the South American Biomass Burning Analysis (SAMBBA) Project, which was conducted during September and October 2012. We find limited evidence for net increases in aerosol mass through atmospheric aging combined with substantial changes in the chemical properties of organic aerosol (OA). Oxidation of the OA increases significantly and rapidly on the scale of 2.5–3 hours based on our case study analysis and is consistent with secondary organic aerosol production. The observations of limited net enhancement in OA coupled with such changes in chemical composition, imply that evaporation of OA is also occurring to balance these changes. We observe significant coatings on black carbon particles at source, but with limited changes with aging in both particle core size and coating thickness. We quantify variability in the ratio of OA to carbon monoxide across our study as a key parameter representing both initial fire conditions and an indicator of net aerosol production with atmospheric aging. We observe ratios of 0.075–0.13 μg sm−3 ppbv−1 in the west of our study region over the Amazon tropical forest in air masses less influenced by precipitation and a value of 0.095 μg sm−3 ppbv−1 over the Cerrado environment in the east. Such values are consistent with emission factors used by numerical models to represent biomass burning OA emissions. Black carbon particle core sizes typically range from 250–290 nm, while coating thicknesses range from 40–110 nm in air masses less influenced by precipitation. The primary driver of the variability we observe appears to be related to changes at the initial fire source. A key lesson from our study is that the complex nature of the regional aerosol and its drivers precludes aggregating our observations as a function of atmospheric aging due to the many conflating and competing factors present. Our study explores and quantifies key uncertainties in the evolution of biomass burning aerosol at both nearfield and regional scales. Our results suggest that the initial conditions of the fire are the primary driver of carbonaceous aerosol physical and chemical properties over tropical South America, aside from significant oxidation of OA during atmospheric aging. Such findings imply that uncertainties in the magnitude of the aerosol burden and its impact on weather, climate, health and natural ecosystems most likely lie in quantifying emission sources, alongside atmospheric dispersion, transport and removal rather than chemical enhancements in mass.


2018 ◽  
Vol 18 (8) ◽  
pp. 5639-5653 ◽  
Author(s):  
Emily V. Fischer ◽  
Liye Zhu ◽  
Vivienne H. Payne ◽  
John R. Worden ◽  
Zhe Jiang ◽  
...  

Abstract. Peroxyacyl nitrate (PAN) is a critical atmospheric reservoir for nitrogen oxide radicals, and plays a lead role in their redistribution in the troposphere. We analyze new Tropospheric Emission Spectrometer (TES) PAN observations over North America from July 2006 to July 2009. Using aircraft observations from the Colorado Front Range, we demonstrate that TES can be sensitive to elevated PAN in the boundary layer (∼ 750 hPa) even in the presence of clouds. In situ observations have shown that wildfire emissions can rapidly produce PAN, and PAN decomposition is an important component of ozone production in smoke plumes. We identify smoke-impacted TES PAN retrievals by co-location with NOAA Hazard Mapping System (HMS) smoke plumes. Depending on the year, 15–32 % of cases where elevated PAN is identified in TES observations (retrievals with degrees of freedom (DOF) > 0.6) overlap smoke plumes during July. Of all the retrievals attempted in the July 2006 to July 2009 study period, 18 % is associated with smoke . A case study of smoke transport in July 2007 illustrates that PAN enhancements associated with HMS smoke plumes can be connected to fire complexes, providing evidence that TES is sufficiently sensitive to measure elevated PAN several days downwind of major fires. Using a subset of retrievals with TES 510 hPa carbon monoxide (CO) > 150 ppbv, and multiple estimates of background PAN, we calculate enhancement ratios for tropospheric average PAN relative to CO in smoke-impacted retrievals. Most of the TES-based enhancement ratios fall within the range calculated from in situ measurements.


2017 ◽  
Author(s):  
Emily V. Fischer ◽  
Liye Zhu ◽  
Vivienne H. Payne ◽  
John R. Worden ◽  
Zhe Jiang ◽  
...  

Abstract. Peroxyacetyl nitrate (PAN) is a critical atmospheric reservoir for nitrogen oxide radicals, and it plays a lead role in their redistribution in the troposphere. We analyze new Tropospheric Emission Spectrometer (TES) PAN observations over North America during July 2006 to 2009. Using aircraft observations from the Colorado Front Range, we demonstrate that TES can be sensitive to elevated PAN in the boundary layer even in the presence of clouds. In situ observations have shown that wildfire emissions can rapidly produce PAN, and PAN decomposition is an important component of ozone production in smoke plumes. We identify smoke-impacted TES PAN retrievals by co-location with NOAA Hazard Mapping System (HMS) smoke plumes. We find that 15–32 % of cases where elevated PAN is identified in TES observations (retrievals with DOF > 0.6) overlap smoke plumes. A case study of smoke transport in July 2007 illustrates that PAN enhancements associated with HMS smoke plumes can be connected to fire complexes, providing evidence that TES is sufficiently sensitive to measure elevated PAN several days downwind of major fires. Using a subset of retrievals with TES 510 hPa carbon monoxide (CO) > 150 ppbv, and multiple estimates of background PAN, we calculate enhancement ratios for tropospheric average PAN relative to CO in smoke-impacted retrievals. Most of the TES-based enhancement ratios fall within the range calculated from in situ measurements.


2013 ◽  
Vol 13 (19) ◽  
pp. 9695-9712 ◽  
Author(s):  
G. Sarwar ◽  
J. Godowitch ◽  
B. H. Henderson ◽  
K. Fahey ◽  
G. Pouliot ◽  
...  

Abstract. We incorporate the recently developed Regional Atmospheric Chemistry Mechanism (version 2, RACM2) into the Community Multiscale Air Quality modeling system for comparison with the existing 2005 Carbon Bond mechanism with updated toluene chemistry (CB05TU). Compared to CB05TU, RACM2 enhances the domain-wide monthly mean hydroxyl radical concentrations by 46% and nitric acid by 26%. However, it reduces hydrogen peroxide by 2%, peroxyacetic acid by 94%, methyl hydrogen peroxide by 19%, peroxyacetyl nitrate by 40%, and organic nitrate by 41%. RACM2 enhances ozone compared to CB05TU at all ambient levels. Although it exhibited greater overestimates at lower observed concentrations, it displayed an improved performance at higher observed concentrations. The RACM2 ozone predictions are also supported by increased ozone production efficiency that agrees better with observations. Compared to CB05TU, RACM2 enhances the domain-wide monthly mean sulfate by 10%, nitrate by 6%, ammonium by 10%, anthropogenic secondary organic aerosols by 42%, biogenic secondary organic aerosols by 5%, and in-cloud secondary organic aerosols by 7%. Increased inorganic and organic aerosols with RACM2 agree better with observed data. Any air pollution control strategies developed using the two mechanisms do not differ appreciably.


2021 ◽  
Author(s):  
Trissevgeni Stavrakou ◽  
Jean-François Müller ◽  
Maite Bauwens ◽  
Thierno Doumbia ◽  
Nellie Elguindi ◽  
...  

&lt;p&gt;The worldwide spread of Covid-19 pandemic caused a dramatic cutback of human activities and triggered a large-scale atmospheric composition experiment. This unfortunate situation provides the opportunity to investigate the response of atmospheric composition to the shutdown measures. Our focus will be on China, where the pandemic emerged in January 2020, and thence strict lockdowns were enforced. Substantial, large-scale decreases in pollutants levels over China and subsequent recovery were revealed by spaceborne observations from TROPOMI instrument on board Sentinel-5 Precursor, as well as by in situ measurements. Most published work on this topic relied on observed changes in column abundances of nitrogen dioxide (NO&lt;sub&gt;2&lt;/sub&gt;), a predominantly anthropogenic compound and an important precursor for ozone production and secondary aerosol formation. Our work adds to this picture by studing the evolution of two other satellite-derived compounds, formaldehyde (HCHO) and peroxyacylnitrate (PAN), observed by TROPOMI and IASI, respectively. HCHO is an intermediate product in the chemical processing of volatile organic compounds (VOCs) of anthropogenic and natural origin. PAN is formed in the oxidation of anthropogenic and biogenic VOCs, and constitute the principal tropospheric NO&lt;sub&gt;x&lt;/sub&gt; reservoir, enabling the transport and release of NO&lt;sub&gt;x&lt;/sub&gt; away from the sources. Chemistry-transport simulations of PAN are challenging due to large uncertainties in formation mechanisms and precursor emissions. We will evaluate and analyze the observed variability of NO&lt;sub&gt;2&lt;/sub&gt;, HCHO, and PAN columns using model simulations with the MAGRITTE v1.1 regional CTM run at 0.5&lt;sup&gt;o&lt;/sup&gt;x0.5&lt;sup&gt;o&lt;/sup&gt; resolution over China for 2019 and 2020. The model uses updated anthropogenic emissions from the CONFORM dataset, which takes into account the reductions during the shutdowns based on traffic and other economic activity data.&amp;#160;&lt;/p&gt;


2018 ◽  
pp. 60-67
Author(s):  
Henrika Pihlajaniemi ◽  
Anna Luusua ◽  
Eveliina Juntunen

This paper presents the evaluation of usersХ experiences in three intelligent lighting pilots in Finland. Two of the case studies are related to the use of intelligent lighting in different kinds of traffic areas, having emphasis on aspects of visibility, traffic and movement safety, and sense of security. The last case study presents a more complex view to the experience of intelligent lighting in smart city contexts. The evaluation methods, tailored to each pilot context, include questionnaires, an urban dashboard, in-situ interviews and observations, evaluation probes, and system data analyses. The applicability of the selected and tested methods is discussed reflecting the process and achieved results.


2013 ◽  
Vol 16 (1) ◽  
pp. 59-67

<p>The Soil Science Institute of Thessaloniki produces new digitized Soil Maps that provide a useful electronic database for the spatial representation of the soil variation within a region, based on in situ soil sampling, laboratory analyses, GIS techniques and plant nutrition mathematical models, coupled with the local land cadastre. The novelty of these studies is that local agronomists have immediate access to a wide range of soil information by clicking on a field parcel shown in this digital interface and, therefore, can suggest an appropriate treatment (e.g. liming, manure incorporation, desalination, application of proper type and quantity of fertilizer) depending on the field conditions and cultivated crops. A specific case study is presented in the current work with regards to the construction of the digitized Soil Map of the regional unit of Kastoria. The potential of this map can easily be realized by the fact that the mapping of the physicochemical properties of the soils in this region provided delineation zones for differential fertilization management. An experiment was also conducted using remote sensing techniques for the enhancement of the fertilization advisory software database, which is a component of the digitized map, and the optimization of nitrogen management in agricultural areas.</p>


Sensors ◽  
2021 ◽  
Vol 21 (3) ◽  
pp. 965
Author(s):  
Xingyue Zhu ◽  
Kaixiong Yu ◽  
Xiaofan Zhu ◽  
Juan Su ◽  
Chi Wu

Nowadays, it is still a challenge for commercial nitrate sensors to meet the requirement of high accuracy in a complex water. Based on deep-ultraviolet spectral analysis and a regression algorithm, a different measuring method for obtaining the concentration of nitrate in seawater is proposed in this paper. The system consists of a deuterium lamp, an optical fiber splitter module, a reflection probe, temperature and salinity sensors, and a deep-ultraviolet spectrometer. The regression model based on weighted average kernel partial least squares (WA-KPLS) algorithm together with corrections for temperature and salinity (TSC) is established. After that, the seawater samples from Western Pacific and Aoshan Bay in Qingdao, China with the addition of various nitrate concentrations are studied to verify the reliability and accuracy of the method. The results show that the TSC-WA-KPLS algorithm shows the best results when compared against the multiple linear regression (MLR) and ISUS (in situ ultraviolet spectrophotometer) algorithms in the temperatures range of 4–25 °C, with RMSEP of 0.67 µmol/L for Aoshan Bay seawater and 1.08 µmol/L for Western Pacific seawater. The method proposed in this paper is suitable for measuring the nitrate concentration in seawater with higher accuracy, which could find application in the development of in-situ and real-time nitrate sensors.


Author(s):  
O. Mousis ◽  
D. H. Atkinson ◽  
R. Ambrosi ◽  
S. Atreya ◽  
D. Banfield ◽  
...  

AbstractRemote sensing observations suffer significant limitations when used to study the bulk atmospheric composition of the giant planets of our Solar System. This impacts our knowledge of the formation of these planets and the physics of their atmospheres. A remarkable example of the superiority of in situ probe measurements was illustrated by the exploration of Jupiter, where key measurements such as the determination of the noble gases’ abundances and the precise measurement of the helium mixing ratio were only made available through in situ measurements by the Galileo probe. Here we describe the main scientific goals to be addressed by the future in situ exploration of Saturn, Uranus, and Neptune, placing the Galileo probe exploration of Jupiter in a broader context. An atmospheric entry probe targeting the 10-bar level would yield insight into two broad themes: i) the formation history of the giant planets and that of the Solar System, and ii) the processes at play in planetary atmospheres. The probe would descend under parachute to measure composition, structure, and dynamics, with data returned to Earth using a Carrier Relay Spacecraft as a relay station. An atmospheric probe could represent a significant ESA contribution to a future NASA New Frontiers or flagship mission to be launched toward Saturn, Uranus, and/or Neptune.


Sign in / Sign up

Export Citation Format

Share Document