scholarly journals Eddy covariance methane measurements at a Ponderosa pine plantation in California

2009 ◽  
Vol 9 (21) ◽  
pp. 8365-8375 ◽  
Author(s):  
C. J. P. P. Smeets ◽  
R. Holzinger ◽  
I. Vigano ◽  
A. H. Goldstein ◽  
T. Röckmann

Abstract. Long term methane flux measurements have been mostly performed with plant or soil enclosure techniques on specific components of an ecosystem. New fast response methane analyzers make it possible to use the eddy covariance (EC) technique instead. The EC technique is advantageous because it allows continuous flux measurements integrating over a larger and more representative area including the complete ecosystem, and allows fluxes to be observed as environmental conditions change naturally without disturbance. We deployed the closed-path Fast Methane analyzer (FMA) from Los Gatos Research Ltd and demonstrate its performance for EC measurements at a Ponderosa pine plantation at the Blodgett Forest site in central California. The fluctuations of the CH4 concentration measured at 10 Hz appear to be small and their standard deviation is comparable to the magnitude of the signal noise (±5 ppbv). Consequently, the power spectra typically have a white noise signature at the high frequency end (a slope of +1). Nevertheless, in the frequency range important for turbulent exchange, the cospectra of CH4 compare very well with all other scalar cospectra confirming the quality of the FMA measurements are good for the EC technique. We furthermore evaluate the complications of combined open and closed-path measurements when applying the Webb-Pearman-Leuning (WPL) corrections (Webb et al., 1980) and the consequences of a phase lag between the water vapor and methane signal inside the closed path system. The results of diurnal variations of CH4 concentrations and fluxes are summarized and compared to the monthly results of process-based model calculations.


2009 ◽  
Vol 9 (1) ◽  
pp. 5201-5229 ◽  
Author(s):  
C. J. P. P. Smeets ◽  
R. Holzinger ◽  
I. Vigano ◽  
A. H. Goldstein ◽  
T. Röckmann

Abstract. Long term methane flux measurements have been mostly performed with plant or soil enclosure techniques on specific components of an ecosystem. New fast response methane analyzers make it possible to use the eddy covariance (EC) technique instead. The EC technique is advantageous because it allows continuous flux measurements integrating over a larger and more representative area including the complete ecosystem, and allows fluxes to be observed as environmental conditions change naturally without disturbance. We deployed the closed-path Fast Methane Analyser (FMA) from Los Gatos Research Ltd and demonstrate its performance for EC measurements at a Ponderosa pine plantation at the Blodgett Forest site in central California. CH4 concentrations measured at 10 Hz showed a relatively high noise level that was caused by a software related problem. Nevertheless, in the frequency range important for turbulent exchange, the cospectra of CH4 compare very well with all other scalar cospectra confirming the quality of the FMA measurements are good for the EC technique. The low-pass filtering characteristics of our closed-path system and the use of the Webb-Pearman-Leuning (WPL) corrections for a combination of open and closed-path sensors are discussed using a large ensemble of cospectra. The diurnal variation of the methane concentration was up to 60 ppbv with an average of 1843 ppbv. Concentrations increased from morning to late afternoon as upslope flow from the valley below carried polluted air to the site, and then decreased through the night as downslope flow carried cleaner air from aloft. The fluxes were consistently directed downward with a well defined diurnal pattern, averaging −35±40 ng m−2 s−1 during the daytime. The detection limit of the system was estimated at 22 ng m−2 s−1. The average CH4 deposition during the daytime was higher than the average value for warm temperate forests in a recent global inventory and the results from a process-based model study.



2012 ◽  
Vol 9 (12) ◽  
pp. 17651-17706 ◽  
Author(s):  
O. Peltola ◽  
I. Mammarella ◽  
S. Haapanala ◽  
G. Burba ◽  
T. Vesala

Abstract. Performances of four methane gas analyzers suitable for eddy covariance measurements are assessed. The assessment and comparison was performed by analyzing eddy covariance data obtained during summer 2010 (1 April to 26 October) at a pristine fen, Siikaneva, Southern Finland. High methane fluxes with pronounced seasonality have been measured at this fen. The four participating methane gas analyzers are commercially available closed-path units TGA-100A (Campbell Scientific Inc., USA), RMT-200 (Los Gatos Research, USA), G1301-f (Picarro Inc., USA) and an early prototype open-path unit Prototype-7700 (LI-COR Biosciences, USA). The RMT-200 functioned most reliably throughout the measurement campaign, during low and high flux periods. Methane fluxes from RMT-200 and G1301-f had the smallest random errors and the fluxes agree remarkably well throughout the measurement campaign. Cospectra and power spectra calculated from RMT-200 and G1301-f data agree well with corresponding temperature spectra during a high flux period. None of the gas analysers showed statistically significant diurnal variation for methane flux. Prototype-7700 functioned only for a short period of time, over one month, in the beginning of the measurement campaign during low flux period, and thus, its overall accuracy and long-term performance were not assessed. Prototype-7700 is a practical choice for measurement sites in remote locations due to its low power demand, however if only the performance in this intercomparison is considered, RMT-200 performed the best and is the recommended choice if a new fast response methane gas analyser is needed.



2018 ◽  
Vol 11 (11) ◽  
pp. 6075-6090 ◽  
Author(s):  
Brian J. Butterworth ◽  
Brent G. T. Else

Abstract. The Arctic marine environment plays an important role in the global carbon cycle. However, there remain large uncertainties in how sea ice affects air–sea fluxes of carbon dioxide (CO2), partially due to disagreement between the two main methods (enclosure and eddy covariance) for measuring CO2 flux (FCO2). The enclosure method has appeared to produce more credible FCO2 than eddy covariance (EC), but is not suited for collecting long-term, ecosystem-scale flux datasets in such remote regions. Here we describe the design and performance of an EC system to measure FCO2 over landfast sea ice that addresses the shortcomings of previous EC systems. The system was installed on a 10 m tower on Qikirtaarjuk Island – a small rock outcrop in Dease Strait located roughly 35 km west of Cambridge Bay, Nunavut, in the Canadian Arctic Archipelago. The system incorporates recent developments in the field of air–sea gas exchange by measuring atmospheric CO2 using a closed-path infrared gas analyzer (IRGA) with a dried sample airstream, thus avoiding the known water vapor issues associated with using open-path IRGAs in low-flux environments. A description of the methods and the results from 4 months of continuous flux measurements from May through August 2017 are presented, highlighting the winter to summer transition from ice cover to open water. We show that the dried, closed-path EC system greatly reduces the magnitude of measured FCO2 compared to simultaneous open-path EC measurements, and for the first time reconciles EC and enclosure flux measurements over sea ice. This novel EC installation is capable of operating year-round on solar and wind power, and therefore promises to deliver new insights into the magnitude of CO2 fluxes and their driving processes through the annual sea ice cycle.



2019 ◽  
Vol 16 (16) ◽  
pp. 3113-3131 ◽  
Author(s):  
Mathias Göckede ◽  
Fanny Kittler ◽  
Carsten Schaller

Abstract. Methane flux measurements by the eddy-covariance technique are subject to large uncertainties, particularly linked to the partly highly intermittent nature of methane emissions. Outbursts of high methane emissions, termed event fluxes, hold the potential to introduce systematic biases into derived methane budgets, since under such conditions the assumption of stationarity of the flow is violated. In this study, we investigate the net impact of this effect by comparing eddy-covariance fluxes against a wavelet-derived reference that is not negatively influenced by non-stationarity. Our results demonstrate that methane emission events influenced 3 %–4 % of the flux measurements and did not lead to systematic biases in methane budgets for the analyzed summer season; however, the presence of events substantially increased uncertainties in short-term flux rates. The wavelet results provided an excellent reference to evaluate the performance of three different gap-filling approaches for eddy-covariance methane fluxes, and we show that none of them could reproduce the range of observed flux rates. The integrated performance of the gap-filling methods for the longer-term dataset varied between the two eddy-covariance towers involved in this study, and we show that gap-filling remains a large source of uncertainty linked to limited insights into the mechanisms governing the short-term variability in methane emissions. With the capability for broadening our observational methane flux database to a wider range of conditions, including the direct resolution of short-term variability on the order of minutes, wavelet-derived fluxes hold the potential to generate new insight into methane exchange processes with the atmosphere and therefore also improve our understanding of the underlying processes.



2010 ◽  
Vol 3 (4) ◽  
pp. 2961-2993 ◽  
Author(s):  
B. Tuzson ◽  
R. V. Hiller ◽  
K. Zeyer ◽  
W. Eugster ◽  
A. Neftel ◽  
...  

Abstract. Fast response optical analyzers based on laser absorption spectroscopy are the preferred tools to measure field-scale mixing ratios and fluxes of a range of trace gases. Several state-of-the-art instruments have become commercially available and are gaining in popularity. This paper aims for a critical field evaluation and intercomparison of two compact, cryogen-free and fast response instruments: a quantum cascade laser based absorption spectrometer from Aerodyne Research, Inc., and an off-axis integrated cavity output spectrometer from Los Gatos Research, Inc. In this paper, both analyzers are characterized with respect to precision, accuracy, response time and also their sensitivity to water vapour. The instruments were tested in a field campaign to assess their behaviour under various meteorological conditions. The instrument's suitability for eddy covariance flux measurements was evaluated by applying an artificial flux of CH4 generated above a managed grassland with otherwise very low methane flux. This allowed an independent verification of the flux measurements accuracy, including the overall eddy covariance setup and data treatment. The retrieved fluxes were in good agreement with the known artificial emission flux, which is more than satisfactory, given that the analyzers were attached to separate sonic anemometers placed on individual eddy towers with different data acquisition systems but similar data treatment that are specific to the best practice used by the involved research teams.



2018 ◽  
Author(s):  
Brian J. Butterworth ◽  
Brent G. T. Else

Abstract. The Arctic marine environment plays an important role in the global carbon cycle. However, there remain large uncertainties in how sea ice affects air–sea fluxes of carbon dioxide (CO2), partially due to disagreement between the two main methods (enclosure and eddy covariance) for measuring CO2 flux (FCO2). The enclosure method has appeared to produce more credible FCO2 than eddy covariance (EC), but is not suited for collecting long-term, ecosystem-scale flux datasets in such remote regions. Here we describe the design and performance of an EC system to measure FCO2 over landfast sea ice that addresses the shortcomings of previous EC systems. The system was installed on a 10-m tower on Qikirtaarjuk Island – a small rock outcrop in Dease Strait located roughly 35 km west of Cambridge Bay, Nunavut in the Canadian Arctic Archipelago. The system incorporates recent developments in the field of air–sea gas exchange by measuring atmospheric CO2 using a closed-path infrared gas analyzer (IRGA) with a dried sample airstream, thus avoiding the known water vapor issues associated with using open-path IRGAs in low-flux environments. A description of the methods and the results from four months of continuous flux measurements from May through August 2017 are presented, highlighting the winter to summer transition from ice cover to open water. We show that the dried, closed-path EC system greatly reduces the magnitude of measured FCO2 compared to simultaneous open-path EC measurements, and for the first time reconciles EC and enclosure flux measurements over sea ice. This novel EC installation is capable of operating year-round on solar/wind power, and therefore promises to deliver new insights into the magnitude of CO2 fluxes and their driving processes through the annual sea ice cycle.



2015 ◽  
Vol 12 (12) ◽  
pp. 3925-3940 ◽  
Author(s):  
R. Felber ◽  
A. Münger ◽  
A. Neftel ◽  
C. Ammann

Abstract. Methane (CH4) from ruminants contributes one-third of global agricultural greenhouse gas emissions. Eddy covariance (EC) technique has been extensively used at various flux sites to investigate carbon dioxide exchange of ecosystems. Since the development of fast CH4 analyzers, the instrumentation at many flux sites has been amended for these gases. However, the application of EC over pastures is challenging due to the spatially and temporally uneven distribution of CH4 point sources induced by the grazing animals. We applied EC measurements during one grazing season over a pasture with 20 dairy cows (mean milk yield: 22.7 kg d−1) managed in a rotational grazing system. Individual cow positions were recorded by GPS trackers to attribute fluxes to animal emissions using a footprint model. Methane fluxes with cows in the footprint were up to 2 orders of magnitude higher than ecosystem fluxes without cows. Mean cow emissions of 423 ± 24 g CH4 head−1 d−1 (best estimate from this study) correspond well to animal respiration chamber measurements reported in the literature. However, a systematic effect of the distance between source and EC tower on cow emissions was found, which is attributed to the analytical footprint model used. We show that the EC method allows one to determine CH4 emissions of cows on a pasture if the data evaluation is adjusted for this purpose and if some cow distribution information is available.



2015 ◽  
Vol 12 (4) ◽  
pp. 3419-3468 ◽  
Author(s):  
R. Felber ◽  
A. Münger ◽  
A. Neftel ◽  
C. Ammann

Abstract. Methane (CH4) from ruminants contributes one third to global agricultural greenhouse gas emissions. Eddy covariance (EC) technique has been extensively used at various flux sites to investigate carbon dioxide exchange of ecosystems. Since the development of fast CH4 analysers the instrumentation at many flux sites have been amended for these gases. However the application of EC over pastures is challenging due to the spatial and temporal uneven distribution of CH4 point sources induced by the grazing animals. We applied EC measurements during one grazing season over a pasture with 20 dairy cows (mean milk yield: 22.7 kg d−1) managed in a rotational grazing system. Individual cow positions were recorded by GPS trackers to attribute fluxes to animal emissions using a footprint model. Methane fluxes with cows in the footprint were up to two orders of magnitude higher than ecosystem fluxes without cows. Mean cow emissions of 423 ± 24 g CH4 head−1 d−1 (best guess of this study) correspond well to animal respiration chamber measurements reported in the literature. However a systematic effect of the distance between source and EC tower on cow emissions was found which is attributed to the analytical footprint model used. We show that the EC method allows to determine CH4 emissions of grazing cows if the data evaluation is adjusted for this purpose and if some cow distribution information is available.



Sign in / Sign up

Export Citation Format

Share Document