scholarly journals Hygroscopic properties of aerosol particles at high relative humidity and their diurnal variations in the North China Plain

2011 ◽  
Vol 11 (1) ◽  
pp. 2991-3040 ◽  
Author(s):  
P. F. Liu ◽  
C. S. Zhao ◽  
T. Göbel ◽  
E. Hallbauer ◽  
A. Nowak ◽  
...  

Abstract. The hygroscopic properties of submicron aerosol particles were determined at a suburban site (Wuqing) in the North China Plain among a cluster of cities during the period 17 July to 12 August 2009. A High Humidity Tandem Differential Mobility Analyser (HH-TDMA) instrument was applied to measure the hygroscopic growth factor (GF) at 90%, 95% and 98.5% relative humidity (RH) for particles with dry diameter between 50–250 nm. The probability distribution of GF (GF-PDF) averaged over the period shows a distinct bimodal pattern, namely, a dominant more-hygroscopic (MH) group and a smaller nearly-hydrophobic (NH) group. The MH group particles were highly hygroscopic, and their GF was relatively constant during the period with average values of 1.54±0.02, 1.81±0.04 and 2.45±0.07 at 90%, 95% and 98.5% RH (D0=100 nm), respectively. The NH group particles grew very slightly when exposed to high RH, with GF values of 1.08±0.02, 1.13±0.06 and 1.24±0.13, respectively at 90%, 95% and 98.5% RH (D0=100 nm). The hygroscopic growth behaviours at different RHs were well represented by the hygroscopicity parameter κ with a single-parameter Köhler model. Thus, the calculation of GF as a function of RH and dry diameter could be facilitated by an empirical parameterization of κ as function of dry diameter. A strong diurnal pattern in number fraction of different hygroscopic groups was observed, indicating a diurnal variation of aerosol mixing state and/or chemical composition. The average number fraction of NH particles during the day was about 8%, while during the nighttime fractions up to 20% were reached. Correspondingly, the state of mixing in terms of water uptake varied significantly during a day. The high fraction of NH particles measured during the night denotes a high degree of external mixing of ambient aerosols, while during the day the degree of external mixing decreased. Simulations using a particle-resolved aerosol box model (PartMC-MOSAIC) suggest that the diurnal variations of aerosol hygroscopicity and mixing state were mainly caused by the evolution of the atmospheric mixing layer. The shallow nocturnal boundary layer during the night facilitated the accumulation of freshly emitted carbonaceous particles (mainly hydrophobic) near the surface while in the morning turbulence entrained the more aged and more hygroscopic particles from aloft and diluted the NH particles near the surface resulting in a decrease in the fraction of NH particles.

2011 ◽  
Vol 11 (7) ◽  
pp. 3479-3494 ◽  
Author(s):  
P. F. Liu ◽  
C. S. Zhao ◽  
T. Göbel ◽  
E. Hallbauer ◽  
A. Nowak ◽  
...  

Abstract. The hygroscopic properties of submicron aerosol particles were determined at a suburban site (Wuqing) in the North China Plain among a cluster of cities during the period 17 July to 12 August, 2009. A High Humidity Tandem Differential Mobility Analyser (HH-TDMA) instrument was applied to measure the hygroscopic growth factor (GF) at 90%, 95% and 98.5% relative humidity (RH) for particles with dry diameters between 50 and 250 nm. The probability distribution of GF (GF-PDF) averaged over the period shows a distinct bimodal pattern, namely, a dominant more-hygroscopic (MH) group and a smaller nearly-hydrophobic (NH) group. The MH group particles were highly hygroscopic, and their GF was relatively constant during the period with average values of 1.54 ± 0.02, 1.81 ± 0.04 and 2.45 ± 0.07 at 90%, 95% and 98.5% RH (D0 = 100 nm), respectively. The NH group particles grew very slightly when exposed to high RH, with GF values of 1.08 ± 0.02, 1.13 ± 0.06 and 1.24 ± 0.13 respectively at 90%, 95% and 98.5% RH (D0 = 100 nm). The hygroscopic growth behaviours at different RHs were well represented by a single-parameter Köhler model. Thus, the calculation of GF as a function of RH and dry diameter could be facilitated by an empirical parameterization of κ as function of dry diameter. A strong diurnal pattern in number fraction of different hygroscopic groups was observed. The average number fraction of NH particles during the day was about 8%, while during the nighttime fractions up to 20% were reached. Correspondingly, the state of mixing in terms of water uptake varied significantly during a day. Simulations using a particle-resolved aerosol box model (PartMC-MOSAIC) suggest that the diurnal variations of aerosol hygroscopicity and mixing state were mainly caused by the evolution of the atmospheric mixing layer. The shallow nocturnal boundary layer during the night facilitated the accumulation of freshly emitted carbonaceous particles (mainly hydrophobic) near the surface while in the morning turbulence entrained the more aged and more hygroscopic particles from aloft and diluted the NH particles near the surface resulting in a decrease in the fraction of NH particles.


2017 ◽  
Vol 164 ◽  
pp. 259-269 ◽  
Author(s):  
Simonas Kecorius ◽  
Nan Ma ◽  
Monique Teich ◽  
Dominik van Pinxteren ◽  
Shenglan Zhang ◽  
...  

2020 ◽  
Vol 2020 ◽  
pp. 1-10 ◽  
Author(s):  
Wanlin Dong ◽  
Chao Li ◽  
Qi Hu ◽  
Feifei Pan ◽  
Jyoti Bhandari ◽  
...  

Climate change has caused uneven changes in hydrological processes (precipitation and evapotranspiration) on a space-temporal scale, which would influence climate types, eventually impact agricultural production. Based on data from 61 meteorological stations from 1961 to 2014 in the North China Plain (NCP), the spatiotemporal characteristics of climate variables, such as humidity index, precipitation, and potential evapotranspiration (ET0), were analyzed. The sensitivity coefficients and contribution rates were applied to ET0. The NCP has experienced a semiarid to humid climate from north to south due to the significant decline of ET0 (−13.8 mm decade−1). In the study region, 71.0% of the sites showed a “pan evaporation paradox” phenomenon. Relative humidity had the most negative influence on ET0, while wind speed, sunshine hours, and air temperature had a positive effect on ET0. Wind speed and sunshine hours contributed the most to the spatiotemporal variation of ET0, followed by relative humidity and air temperature. Overall, the key climate factor impacting ET0 was wind speed decline in the NCP, particularly in Beijing and Tianjin. The crop yield in Shandong and Henan provinces was higher than that in the other regions with a higher humidity index. The lower the humidity index in Hebei province, the lower the crop yield. Therefore, potential water shortages and water conflict should be considered in the future because of spatiotemporal humidity variations in the NCP.


2012 ◽  
Vol 12 (11) ◽  
pp. 4935-4950 ◽  
Author(s):  
J. Chen ◽  
C. S. Zhao ◽  
N. Ma ◽  
P. F. Liu ◽  
T. Göbel ◽  
...  

Abstract. Visibility degradation is a pervasive and urgent environmental problem in China. The occurrence of low visibility events is frequent in the North China Plain, where the aerosol loading is quite high and aerosols are strongly hygroscopic. A parameterization of light extinction (Kex) for low visibilities on hazy days is proposed in this paper, based on visibility, relative humidity (RH), aerosol hygroscopic growth factors and particle number size distributions measured during the Haze in China (HaChi) Project. Observational results show that a high aerosol volume concentration is responsible for low visibility at RH <90%; while for RH >90%, decrease of visibility is mainly influenced by the increase of RH. The parameterization of Kex is developed on the basis of aerosol volume concentrations and RH, taking into accounts the sensitivity of visibility to the two factors and the availability of corresponding data. The extinction coefficients calculated with the parameterization schemes agree well with the directly measured values.


2022 ◽  
Author(s):  
Xueli Liu ◽  
Liang Ran ◽  
Weili Lin ◽  
Xiaobin Xu ◽  
Zhiqiang Ma ◽  
...  

Abstract. Strict air pollution control strategies have been implemented in recent decades in the North China Plain (NCP), previously one of the most polluted regions in the world, and have resulted in considerable changes in emissions of air pollutants. However, little is so far known about the long-term trends of the regional background level of NOx and SO2, along with the increase and decrease processes of regional emissions. In this study, the seasonal and diurnal variations of NOx and SO2 as well as their long-term trends at a regional background station in the NCP were characterized from 2004 to 2016. On average, SO2 and NOx mixing ratios were 5.7 ± 8.4 ppb and 14.2 ± 12.4 ppb, respectively. The seasonal variations in SO2 and NOx mixing ratios showed a similar pattern with a peak in winter and a valley in summer. However, the diurnal variations in SO2 and NOx mixing ratios greatly differed for all seasons, indicating different sources for SO2 and NOx. Overall, the annual mean SO2 exhibited a significant decreasing trend of ‒6.1 % yr−1 (R = −0.84, P < 0.01) from 2004 to 2016, which is very close to −6.3 % yr−1 of the annual SO2 emission in Beijing, and a greater decreasing trend of −7.4 % yr−1 (R = −0.95, P < 0.01) from 2008 to 2016. The annual mean of NOx showed a fluctuating rise of +3.4 % yr−1 (R = 0.38, P = 0.40) from 2005 to 2010, reaching the peak value (16.9 ppb) in 2010, and then exhibited an extremely significant fluctuating downward trend of −4.5 % yr−1 (R = 0.95, P < 0.01) from 2010 to 2016. After 2010, the annual mean NOx mixing ratios correlated significantly (R = 0.94, P < 0.01) with the annual NOx emission in North China. The decreasing rate (−4.8 % yr−1, R = −0.92, P < 0.01) of the annual mean NOx mixing ratios from 2011 to 2016 at SDZ are lower than the one (−8.8 % yr−1, R = −0.94, P < 0.01) for the annual NOx emission in the NCP and (−9.0 % yr−1, R = −0.96, P < 0.01) in Beijing. It indicated that surface NOx mixing ratios at SDZ had weaker influence than SO2 by the emission reduction in Beijing and its surrounding areas in the NCP. The increase in the amount of motor vehicles led to an increase in traffic emissions for NOx. This study supported conclusions from previous studies that the measures taken for controlling NOx and SO2 in the NCP in the past decades were generally successful. However, NOx emission control should be strengthened in the future.


2021 ◽  
Author(s):  
Jiangchuan Tao ◽  
Ye Kuang ◽  
Nan Ma ◽  
Juan Hong ◽  
Yele Sun ◽  
...  

&lt;p&gt;The formation of secondary aerosols (SA, including secondary organic and inorganic aerosols, SOA and SIA) were the dominant sources of aerosol particles in the North China Plain and can result in significant variations of particle size distribution (PNSD) and hygroscopicity. Earlier studies have shown that the mechanism of SA formation can be affected by relative humidity (RH), and thus has different influences on the aerosol hygroscopicity and PNSD under different RH conditions. Based on the measurements of size-resolved particle activation ratio (SPAR), hygroscopicity distribution (GF-PDF), PM&lt;sub&gt;2.5&lt;/sub&gt; chemical composition, PNSD, meteorology and gaseous pollutants in a recent field campaign McFAN (Multiphase chemistry experiment in Fogs and Aerosols in the North China Plain) conducted at Gucheng site from November 16&lt;sup&gt;th&lt;/sup&gt; to December 16&lt;sup&gt;th&lt;/sup&gt; in 2018, the influences of SA formation on CCN activity and CCN number concentration (N&lt;sub&gt;CCN&lt;/sub&gt;) calculation at super-saturation of 0.05% under different RH conditions were studied. Measurements showed that during daytime, SA formation could lead to a significant increase in N&lt;sub&gt;CCN&lt;/sub&gt; and a strong diurnal variation in CCN activity. During periods with daytime minimum RH exceeding 50% (high RH conditions), SA formation significantly contributed to the particle mass/size changes in wide particle size range of 150 nm to 1000 nm, and led to an increase of N&lt;sub&gt;CCN&lt;/sub&gt; in particle size range of 200 nm to 300 nm, while increases in particle mass concentration mainly occurred within particle sizes larger than 300nm. During periods with daytime minimum RH below 30% in (low RH conditions), SA formation mainly contributed to the particle mass/size and N&lt;sub&gt;CCN&lt;/sub&gt; changes in particle sizes smaller than 300 nm. As a result, under the same amount SA formation induced mass increase, the increase of N&lt;sub&gt;CCN&lt;/sub&gt; was weaker under high RH conditions, while stronger under low RH conditions. Moreover, the diurnal variations of aerosol mixing state (inferred from CCN measurements) due to SA formation was different under different RH conditions. If the variations of the aerosol mixing state were not considered, estimations of N&lt;sub&gt;CCN&lt;/sub&gt; would bear significant deviations. By applying aerosol mixing state estimated by number fraction of hygroscopic particles from measurements of particle hygroscopicity or mass fraction of SA from measurements of particle chemical compositions, N&lt;sub&gt;CCN&lt;/sub&gt; calculation can be largely improved with relative deviation within 30%. This study improves the understanding of the impact of SA formation on CCN activity and N&lt;sub&gt;CCN&lt;/sub&gt; calculation, which is of great significance for improving parameterization of SA formation in aerosol models and CCN calculation in climate models.&lt;/p&gt;


Sign in / Sign up

Export Citation Format

Share Document