scholarly journals Observations of total peroxy nitrates and total alkyl nitrates during the OP3 campaign: isoprene nitrate chemistry above a south-east Asian tropical rain forest

2012 ◽  
Vol 12 (2) ◽  
pp. 4797-4829
Author(s):  
E. Aruffo ◽  
P. Di Carlo ◽  
C. Dari-Salisburgo ◽  
F. Biancofiore ◽  
F. Giammaria ◽  
...  

Abstract. Measurements of total peroxy nitrates (ΣRO2NO2, ΣPNs), total alkyl nitrates (ΣRONO2, ΣANs) and nitrogen dioxide (NO2) were made above the surface of a Malaysian tropical rain forest in Borneo, using a laser-induced fluorescence instrument developed at the University of L'Aquila (Italy). This new instrument uses the direct excitation of NO2 at 532 nm in order to measure its concentrations detecting by the NO2 fluorescence at wavelengths longer than 610 nm. ΣPNs and ΣANs are indirectly measured after their thermal dissociation into NO2. Observations showed enhanced levels of NO2 during nighttime, an increase of ΣPNs during the afternoon and almost no evident diurnal cycle of ΣANs. The diurnal maximums of 200 pptv for ΣPNs and ΣANs are well below the peaks reported in other forest sites. A box model constrained with measured species, reproduces well the observed ΣPNs, but overestimates ΣANs concentrations. The reason of this model-observation discrepancy could be a wrong parameterization in the isoprene nitrates (INs) chemistry mechanism. Sensitivity tests show that: (1) reducing the yield of INs from the reaction of peroxy nitrates with NO to almost the lowest values reported in literature (5%), (2) reducing the INs recycling to 70% and (3) keeping the INs dry deposition at 4 cm s−1, improve the agreement between modelled and measured ΣANs of 20% on average. These results imply that in the tropical rain forest, even if ΣPNs and ΣANs concentrations are lower than those observed in other North American forests, the yield and dry deposition of INs are similar. Another comparable result is that in the INs oxidation its recycling dominates with only a 30% release of NO2, which has implications on tropospheric ozone production and aerosol budget.

2006 ◽  
Vol 6 (3) ◽  
pp. 4415-4464 ◽  
Author(s):  
J. G. Murphy ◽  
D. A. Day ◽  
P. A. Cleary ◽  
P. J. Wooldridge ◽  
R. C. Cohen

Abstract. Observations of speciated nitrogen oxides, namely NO2, total peroxy nitrates (ΣPNs), total alkyl nitrates (ΣANs), and HNO3 by thermal dissociation laser induced fluorescence (TD-LIF), and supporting chemical and meteorological measurements at Big Hill (1860 m), a high elevation site in California's Sierra Nevada Mountains, are described. From May through October, terrain-driven winds in the region routinely bring air from Sacramento, 100 km southwest of the site, upslope over oak and pine forests to Big Hill during the day, while at night, the site often samples clean, dry air characteristic of the free troposphere. Winter differs mainly in that the meteorology does not favour the buildup of Sacramento's pollution over the Sierra Nevada range, and the urban-influenced air that is seen has been less affected by biogenic VOC emissions, resulting in longer lifetime for NO2 and a predominance of the inorganic forms of nitrogen oxides. Summertime observations at Big Hill can be compared with those from Granite Bay, a Sacramento suburb, and from the University of California's Blodgett Forest Research Station to examine the evolution of nitrogen oxides and ozone within the urban plume. Nitrogen oxide radicals (NO and NO2), which dominate total nitrogen oxides (NOy) at Granite Bay, are rapidly converted into HNO3, ΣPNs, and ΣANs, such that these compounds contribute 29, 30, and 21% respectively to the NOy budget in the plume at Big Hill. Nevertheless, the decreasing concentrations of NO2 as the plume is advected to Big Hill lead to decreases in the production rate of HNO3 and ozone. The data also demonstrate the role that temperature plays in sequestering NO2 into peroxy nitrates, effectively decreasing the rate of ozone production. The important contribution of ΣANs to NOy in the region suggests that they should be considered with regards to export of NOy from the boundary layer. Nocturnal observations of airmasses characteristic of the free troposphere showed lower NOy concentrations, which were dominated by HNO3 with a relatively small contribution from the organic nitrates.


2006 ◽  
Vol 6 (12) ◽  
pp. 5321-5338 ◽  
Author(s):  
J. G. Murphy ◽  
D. A. Day ◽  
P. A. Cleary ◽  
P. J. Wooldridge ◽  
R. C. Cohen

Abstract. Observations of speciated nitrogen oxides, namely NO2, total peroxy nitrates (ΣPNs), total alkyl nitrates (ΣANs), and HNO3 by thermal dissociation laser induced fluorescence (TD-LIF), and supporting chemical and meteorological measurements at Big Hill (1860 m), a high elevation site in California's Sierra Nevada Mountains, are described. From May through October, terrain-driven winds in the region routinely bring air from Sacramento, 100 km southwest of the site, upslope over oak and pine forests to Big Hill during the day, while at night, the site often samples clean, dry air characteristic of the free troposphere. Winter differs mainly in that the meteorology does not favour the buildup of Sacramento's pollution over the Sierra Nevada range, and the urban-influenced air that is seen has been less affected by biogenic VOC emissions, resulting in longer lifetime for NO2 and a predominance of the inorganic forms of nitrogen oxides. Summertime observations at Big Hill can be compared with those from Granite Bay, a Sacramento suburb, and from the University of California's Blodgett Forest Research Station to examine the evolution of nitrogen oxides and ozone within the urban plume. Nitrogen oxide radicals (NO and NO2), which dominate total nitrogen oxides (NOy) at Granite Bay, are rapidly converted into HNO3, ΣPNs, and ΣANs, such that these compounds contribute 29, 30, and 21% respectively to the NOy budget in the plume at Big Hill. Nevertheless, the decreasing concentrations of NO2 as the plume is advected to Big Hill lead to decreases in the production rate of HNO3 and ozone. The data also demonstrate the role that temperature plays in sequestering NO2 into peroxy nitrates, effectively decreasing the rate of ozone production. The important contribution of ΣANs to NOy in the region suggests that they should be considered with regards to export of NOy from the boundary layer. Nocturnal observations of airmasses characteristic of the free troposphere showed lower NOy concentrations, which were dominated by HNO3 with a relatively small contribution from the organic nitrates.


1985 ◽  
Vol 1 (2) ◽  
pp. 171-182 ◽  
Author(s):  
Soedarsono Riswan ◽  
J. B. Kenworthy ◽  
Kuswata Kartawinata

ABSTRACTIn the absence of growth rings it is difficult to give a precise time scale for processes associated with the re-establishment of tropical rain forest. This paper explores other methods by which a time scale may be constructed. The proportions of primary and secondary species, an index of similarity, biomass measurements, girth dimensions and gap size are all considered from sites in East Kalimantan, Indonesia. Data from primary, secondary and experimentally cleared forest sites are compared to estimate the minimum time required for various phases involved in the re-establishment of tropical rain forest after disturbance. A simple model is proposed to accommodate the data and other estimates in the literature. The model predicts a minimum period for the stablization of secondary species numbers as 60–70 years and the replacement of primary species as 150 years at which point gap formation is initiated. After approximately 220–250 years biomass stabilizes while individual trees exist for over 500 years.


2021 ◽  
Author(s):  
Patrick Dewald ◽  
Raphael Dörich ◽  
Jan Schuladen ◽  
Jos Lelieveld ◽  
John N. Crowley

Abstract. We present measurements of isoprene-derived organic nitrates (ISOP-NITs) generated in the reaction of isoprene with the nitrate radical (NO3) in a 1 m3 Teflon reaction chamber. Detection of ISOP-NITs is achieved via their thermal dissociation to nitrogen dioxide (NO2), which is monitored by cavity ring-down spectroscopy (TD-CRDS). Using thermal dissociation inlets (TDIs) made of quartz, the temperature-dependent dissociation profiles (thermograms) of ISOP-NITs measured in the presence of ozone (O3) are broad (350 to 700 K), which contrasts the narrower profiles previously observed for e.g. isopropyl nitrate (iPN) or peroxy acetyl nitrate (PAN) under the same conditions. The shape of the thermograms varied with the TDI’s surface to volume ratio and with material of the inlet walls, providing clear evidence that ozone and quartz surfaces catalyse the dissociation of unsaturated organic nitrates leading to formation of NO2 at temperatures well below 475 K, impeding the separate detection of alkyl nitrates (ANs) and peroxy nitrates (PNs). We present a simple, viable solution to this problem and discuss the potential for interference by the thermolysis of nitric acid (HNO3), nitrous acid (HONO) and O3.


2016 ◽  
Vol 9 (10) ◽  
pp. 5103-5118 ◽  
Author(s):  
Nicolas Sobanski ◽  
Jan Schuladen ◽  
Gerhard Schuster ◽  
Jos Lelieveld ◽  
John N. Crowley

Abstract. We report the characteristics and performance of a newly developed five-channel cavity ring-down spectrometer to detect NO3, N2O5, NO2, total peroxy nitrates (ΣPNs) and total alkyl nitrates (ΣANs). NO3 and NO2 are detected directly at 662 and 405 nm, respectively. N2O5 is measured as NO3 after thermal decomposition at 383 K. PNs and ANs are detected as NO2 after thermal decomposition at 448 and 648 K. We describe details of the instrument construction and operation as well as the results of extensive laboratory experiments that quantify the chemical and optical interferences that lead to biases in the measured mixing ratios, in particular involving the reactions of organic radical fragments following thermal dissociation of PNs and ANs. Finally, we present data obtained during the first field deployment of the instrument in July 2015.


2015 ◽  
Vol 8 (11) ◽  
pp. 11533-11596
Author(s):  
J. Thieser ◽  
G. Schuster ◽  
G. J. Phillips ◽  
A. Reiffs ◽  
U. Parchatka ◽  
...  

Abstract. We describe a Thermal Dissociation Cavity-Ring-Down Spectrometer (TD-CRDS) for measurement of ambient NO2, total peroxy nitrates (ΣPNs) and total alkyl nitrates (ΣANs). The spectrometer has two separate cavities operating at ~ 405.2 and 408.5 nm, one cavity (reference) samples NO2 continuously from an inlet at ambient temperature, the other samples sequentially from an inlet at 473 K in which PNs are converted to NO2 or from an inlet at 723 K in which both PNs and ANs are converted to NO2, difference signals being used to derive mixing ratios of ΣPNs and ΣANs. We describe an extensive set of laboratory experiments and numerical simulations to characterise the fate of organic radicals in the hot inlets and cavity and derive correction factors to account for the bias resulting from interaction of peroxy radicals with ambient NO and NO2. Finally, we present the first measurements and comparison with other instruments during a field campaign, outline the limitations of the present instrument and provide an outlook for future improvements.


2016 ◽  
Author(s):  
N. Sobanski ◽  
J. Schuladen ◽  
G. Schuster ◽  
J. Lelieveld ◽  
J. Crowley

Abstract. We report the characteristics and performance of a newly developed 5-channel cavity-ring-down spectrometer to detect NO3, N2O5, NO2, total peroxy nitrates and total alkyl nitrates. NO3 and NO2 are detected directly at 662 nm and 405 nm, respectively. N2O5 is measured as NO3 after thermal decomposition at 383 K. PNs and ANs are detected as NO2 after thermal decomposition at 448 K and 648 K. We describe details of the instrument construction and operation as well as the results of extensive laboratory experiments that quantify the chemical and optical interferences that lead to biases in the measured mixing ratios, in particular involving the reactions of organic radical fragments following thermal dissociation of PNs and ANs. Finally, we present data obtained during the first field deployment of the instrument in July 2015.


2016 ◽  
Author(s):  
Nicolas Sobanski ◽  
Jim Thieser ◽  
Jan Schuladen ◽  
Carina Sauvage ◽  
Wei Song ◽  
...  

Abstract. We report in-situ measurement of total peroxy-nitrates (ƩPNs) and total alkyl nitrates (ƩANs) in a forested/urban location at the top of the Kleiner Feldberg mountain in South-West Germany. The data, obtained using Thermal Dissociation Cavity Ring Down Spectroscopy (TD-CRDS) in August-September 2011 (PARADE campaign) and July–August 2015 (NOTOMO campaign), represent the first detailed study of ƩPNs and ƩANs over continental Europe. We find that a significant fraction of NOx (up to 75 %) is sequestered as organics nitrates at this site. Futher, we also show that the night-time production of alkyl nitrates by reaction of NO3 with biogenic hydrocarbons is comparable to that from day-time, OH-initiated oxidation pathways. The ƩANs-to-ozone ratio obtained during PARADE was used to derive an approximate, average yield of organic nitrates at noon time from the OH initiated oxidation of VOCs of 7 % at this site in 2011, which is comparable with that obtained from an analysis of VOCs at the site. A much lower yield,


Sign in / Sign up

Export Citation Format

Share Document