scholarly journals A method for merging nadir-sounding climate records, with an application to the global-mean stratospheric temperature data sets from SSU and AMSU

2015 ◽  
Vol 15 (7) ◽  
pp. 10085-10122 ◽  
Author(s):  
C. McLandress ◽  
T. G. Shepherd ◽  
A. I. Jonsson ◽  
T. von Clarmann ◽  
B. Funke

Abstract. A method is proposed for merging different nadir-sounding climate data records using measurements from high resolution limb sounders to provide a transfer function between the different nadir measurements. The nadir-sounding records need not be overlapping so long as the limb-sounding record bridges between them. The method is applied to global mean stratospheric temperatures from the NOAA Climate Data Records based on the Stratospheric Sounding Unit (SSU) and the Advanced Microwave Sounding Unit-A (AMSU), extending the SSU record forward in time to yield a continuous data set from 1979 to present. SSU and AMSU are bridged using temperature measurements from the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS), which is of high enough vertical resolution to accurately represent the weighting functions of both SSU and AMSU. For this application, a purely statistical approach is not viable since the different nadir channels are not sufficiently linearly independent, statistically speaking. The extended SSU global-mean data set is in good agreement with temperatures from the Microwave Limb Sounder (MLS) on the Aura satellite, with both exhibiting a cooling trend of ~ 0.6 ± 0.3 K decade−1 in the upper stratosphere from 2004–2012. The extended SSU data set also compares well with chemistry-climate model simulations over its entire record, including the contrast between the weak cooling seen over 1995–2004 compared with the large cooling seen in the period 1986–1995 of strong ozone depletion.

2015 ◽  
Vol 15 (16) ◽  
pp. 9271-9284 ◽  
Author(s):  
C. McLandress ◽  
T. G. Shepherd ◽  
A. I. Jonsson ◽  
T. von Clarmann ◽  
B. Funke

Abstract. A method is proposed for merging different nadir-sounding climate data records using measurements from high-resolution limb sounders to provide a transfer function between the different nadir measurements. The two nadir-sounding records need not be overlapping so long as the limb-sounding record bridges between them. The method is applied to global-mean stratospheric temperatures from the NOAA Climate Data Records based on the Stratospheric Sounding Unit (SSU) and the Advanced Microwave Sounding Unit-A (AMSU), extending the SSU record forward in time to yield a continuous data set from 1979 to present, and providing a simple framework for extending the SSU record into the future using AMSU. SSU and AMSU are bridged using temperature measurements from the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS), which is of high enough vertical resolution to accurately represent the weighting functions of both SSU and AMSU. For this application, a purely statistical approach is not viable since the different nadir channels are not sufficiently linearly independent, statistically speaking. The near-global-mean linear temperature trends for extended SSU for 1980–2012 are −0.63 ± 0.13, −0.71 ± 0.15 and −0.80 ± 0.17 K decade−1 (95 % confidence) for channels 1, 2 and 3, respectively. The extended SSU temperature changes are in good agreement with those from the Microwave Limb Sounder (MLS) on the Aura satellite, with both exhibiting a cooling trend of ~ 0.6 ± 0.3 K decade−1 in the upper stratosphere from 2004 to 2012. The extended SSU record is found to be in agreement with high-top coupled atmosphere–ocean models over the 1980–2012 period, including the continued cooling over the first decade of the 21st century.


2010 ◽  
Vol 10 (6) ◽  
pp. 2643-2653 ◽  
Author(s):  
Q. Fu ◽  
S. Solomon ◽  
P. Lin

Abstract. This study examines the seasonality of tropical lower-stratospheric temperature trends using the Microwave Sounding Unit lower-stratospheric channel (T4) for 1980–2008. We present evidence that this seasonality is largely a response to changes in the Brewer-Dobson circulation (BDC) driven by extratropical wave forcing. We show how the tropical T4 trend can be used as an indicator of changes in the BDC, and find that the BDC is strengthening for 1980–2008 in June–November related to the Southern Hemisphere (SH) and in December–February to the Northern Hemisphere (NH). In marked contrast, we find that the BDC is weakening in March–May, apparently because of a weakening of its northern cell. The novel observational evidence on the seasonal dependence of the BDC trends presented in this study has important implications for the understanding of climate change in the stratosphere as well as testing climate model simulations.


2009 ◽  
Vol 9 (5) ◽  
pp. 21819-21846 ◽  
Author(s):  
Q. Fu ◽  
S. Solomon ◽  
P. Lin

Abstract. This study examines the seasonality of tropical lower-stratospheric temperature trends using the Microwave Sounding Unit lower-stratospheric channel (T4) for 1979–2007. We present evidence that this seasonality is a response to changes in the Brewer–Dobson circulation (BDC) driven by extratropical wave forcing. We show how the tropical T4 trend can be used as an indicator of the change in the BDC, and find that the BDC is strengthening for 1979–2007 in June–November related to the Southern Hemisphere (SH) and in December–February to the Northern Hemisphere (NH). In marked contrast, we find that the BDC is weakening in March–May, apparently because of a weakening of its northern cell. The novel observational evidence on the seasonal dependence of the BDC trends presented in this study has important implications for the understanding of climate change in the stratosphere as well as testing climate model simulations.


2021 ◽  
Author(s):  
Elin Lundstad ◽  
Yuri Brugnera ◽  
Stefan Brönnimann

<p>This work describes the compilation of global instrumental climate data with a focus on the 18th and early 19th centuries. This database provides early instrumental data recovered for thousands of locations around the world. Instrumental meteorological measurements from periods prior to the start of national weather services are designated “early instrumental data”. Much of the data is taken from repositories we know (GHCN, ISTI, CRUTEM, Berkeley Earth, HISTALP). In addition, many of these stations have not been digitized before. Therefore,  we provide a new global collection of monthly averages of multivariable meteorological parameters before 1890 based on land-based meteorological station data. The product will be form as the most comprehensive global monthly climate data set, encompassing temperature, pressure, and precipitation as ever done. These data will be quality controlled and analyzed with respect to climate variability and they be assimilated into global climate model simulations to provide monthly global reconstructions. The collection has resulted in a completely new database that is uniform, where no interpolations are included. Therefore, we are left with climate reconstruction that becomes very authentic. This compilation will describe the procedure and various challenges we have encountered by creating a unified database that can later be used for e.g. models. It will also describe the strategy for quality control that has been adopted is a sequence of tests.</p>


2015 ◽  
Vol 28 (8) ◽  
pp. 3024-3040 ◽  
Author(s):  
Albert Ossó ◽  
Yolanda Sola ◽  
Karen Rosenlof ◽  
Birgit Hassler ◽  
Joan Bech ◽  
...  

Abstract Most global circulation models and climate–chemistry models forced with increasing greenhouse gases predict a strengthening of the Brewer–Dobson circulation (BDC) in the twenty-first century, and some of them claim that such strengthening has already begun at the end of the twentieth century. However, observational evidence for such a trend remains inconclusive. The goal of this paper is to examine the evidence for observed trends in the stratospheric overturning circulation using a suite of currently available observational stratospheric temperature data. Trends are examined as “departures” from the global mean temperature, since such trends reflect the effects of dynamics and spatially inhomogeneous radiative forcing and are to first order independent of the direct radiative effects of increasing well-mixed greenhouse gas concentrations. The primary conclusion of the study is that temperature observations do not reveal statistically significant trends in the Brewer–Dobson circulation over the period from 1979 to the present, as covered by Microwave Sounding Unit and Stratospheric Sounding Unit temperatures. The estimated trends in the BDC are weak in all datasets and not statistically significant at the 95% confidence level. In many cases, different data products yield very different results, particularly when the trends are stratified by season. Implications for the interpretation of recent stratospheric climate change are discussed. The results illustrate the essential need to better constrain the accuracy of future stratospheric temperature datasets.


2005 ◽  
Vol 5 ◽  
pp. 119-125 ◽  
Author(s):  
S. Kotlarski ◽  
A. Block ◽  
U. Böhm ◽  
D. Jacob ◽  
K. Keuler ◽  
...  

Abstract. The ERA15 Reanalysis (1979-1993) has been dynamically downscaled over Central Europe using 4 different regional climate models. The regional simulations were analysed with respect to 2m temperature and total precipitation, the main input parameters for hydrological applications. Model results were validated against three reference data sets (ERA15, CRU, DWD) and uncertainty ranges were derived. For mean annual 2 m temperature over Germany, the simulation bias lies between -1.1°C and +0.9°C depending on the combination of model and reference data set. The bias of mean annual precipitation varies between -31 and +108 mm/year. Differences between RCM results are of the same magnitude as differences between the reference data sets.


2017 ◽  
Vol 30 (15) ◽  
pp. 6005-6016 ◽  
Author(s):  
Fang Pan ◽  
Xianglei Huang ◽  
Stephen S. Leroy ◽  
Pu Lin ◽  
L. Larrabee Strow ◽  
...  

Global-mean radiances observed by the Atmospheric Infrared Sounder (AIRS) and the Advanced Microwave Sounding Unit A (AMSU-A) are analyzed from 2003 to 2012. The focus of this study is on channels sensitive to emission and absorption in the stratosphere. Optimal fingerprinting is used to obtain estimates of changes of stratospheric temperature in five vertical layers due to external forcing in the presence of natural variability. Natural variability is estimated using synthetic radiances based on the 500-yr GFDL CM3 and 240-yr HadGEM2-CC control runs. The results show a cooling rate of 0.65 ± 0.11 (2 σ) K decade−1 in the upper stratosphere above 6 hPa, approximately 0.46 ± 0.24 K decade−1 in two midstratospheric layers between 6 and 30 hPa, and 0.39 ± 0.32 K decade−1 in the lower stratosphere (30–60 hPa). The cooling rate in the lowest part of the stratosphere (60–100 hPa) is −0.014 ± 0.22 K decade−1, which is smallest among all five layers and statistically insignificant. The synergistic use of well-calibrated passive infrared and microwave radiances permits disambiguation of trends of carbon dioxide and stratospheric temperature, increases vertical resolution of detected stratospheric temperature trends, and effectively reduces uncertainties of estimated temperature trends.


2017 ◽  
Vol 10 (5) ◽  
pp. 1689-1705 ◽  
Author(s):  
Rosa Pacione ◽  
Andrzej Araszkiewicz ◽  
Elmar Brockmann ◽  
Jan Dousa

Abstract. The present availability of 18+ years of GNSS data belonging to the EUREF Permanent Network (EPN, http://www.epncb.oma.be/) is a valuable database for the development of a climate data record of GNSS tropospheric products over Europe. This data record can be used as a reference for a variety of scientific applications (e.g. validation of regional numerical weather prediction reanalyses and climate model simulations) and has a high potential for monitoring trends and the variability in atmospheric water vapour. In the framework of the EPN-Repro2, the second reprocessing campaign of the EPN, five Analysis Centres homogenously reprocessed the EPN network for the period 1996–2014. A huge effort has been made to provide solutions that are the basis for deriving new coordinates, velocities and tropospheric parameters for the entire EPN. The individual contributions are then combined to provide the official EPN reprocessed products. This paper is focused on the EPN-Repro2 tropospheric product. The combined product is described along with its evaluation against radiosonde data and European Centre for Medium-Range Weather Forecasts (ECMWF) reanalysis (ERA-Interim) data.


2015 ◽  
Vol 8 (1) ◽  
pp. 235-267 ◽  
Author(s):  
A. A. Penckwitt ◽  
G. E. Bodeker ◽  
P. Stoll ◽  
J. Lewis ◽  
T. von Clarmann ◽  
...  

Abstract. A new database of monthly mean zonal mean (5° zones) temperature time series spanning 17 pressure levels from 300 to 7 hPa and extending from 2002 to 2012 was created by merging monthly mean time series from two satellite-based mid-infrared spectrometers (ACE-FTS and MIPAS), a microwave sounder (SMR), and from three satellite-based radio occultation experiments (GRACE, CHAMP, and TSX). The primary intended use of this new temperature data set is to validate the merging of the Microwave Sounding Unit channel 4 (MSU4), and Advanced Microwave Sounding Unit channel 9 (AMSU9) temperature time series conducted in previous studies. The six source data sets were merged by removing offsets and trends between the different measurement series. Weighted means were calculated of the six source data sets where the weights were a function of the uncertainty on the original monthly mean data. This new temperature data set of the upper troposphere and stratosphere has been validated by comparing it to RATPAC-A, COSMIC radio occultation data as well as the NCEPCFSR reanalyses. Differences in all three cases were typically < 2 K in the upper troposphere and lower stratosphere, but could reach up to 5 K in the mid-stratosphere. The data across the 17 pressure levels have then been vertically integrated, using the MSU4/AMSU9 weighting function, to provide a deep vertical layer temperature proxy of the merged MSU4+AMSU9 series. Differences between this vertically integrated data set and two different versions of the MSU4+AMSU9 data set – one from Remote Sensing Systems and one from the University of Alabama at Huntsville – were examined for discontinuities. No statistically significant discontinuities were found in either of those two data sets suggesting that the transition from the MSU4+AMSU9 data to AMSU9 data only does not introduce any discontinuities in the MSU4+AMSU9 climate data records that might compromise their use in temperature trend analyses.


Sign in / Sign up

Export Citation Format

Share Document