Global Instrumental Meteorological Database Before 1890 – a useful overview

Author(s):  
Elin Lundstad ◽  
Yuri Brugnera ◽  
Stefan Brönnimann

<p>This work describes the compilation of global instrumental climate data with a focus on the 18th and early 19th centuries. This database provides early instrumental data recovered for thousands of locations around the world. Instrumental meteorological measurements from periods prior to the start of national weather services are designated “early instrumental data”. Much of the data is taken from repositories we know (GHCN, ISTI, CRUTEM, Berkeley Earth, HISTALP). In addition, many of these stations have not been digitized before. Therefore,  we provide a new global collection of monthly averages of multivariable meteorological parameters before 1890 based on land-based meteorological station data. The product will be form as the most comprehensive global monthly climate data set, encompassing temperature, pressure, and precipitation as ever done. These data will be quality controlled and analyzed with respect to climate variability and they be assimilated into global climate model simulations to provide monthly global reconstructions. The collection has resulted in a completely new database that is uniform, where no interpolations are included. Therefore, we are left with climate reconstruction that becomes very authentic. This compilation will describe the procedure and various challenges we have encountered by creating a unified database that can later be used for e.g. models. It will also describe the strategy for quality control that has been adopted is a sequence of tests.</p>

2021 ◽  
Author(s):  
Ole B. Christensen ◽  
Erik Kjellström

AbstractCollections of large ensembles of regional climate model (RCM) downscaled climate data for particular regions and scenarios can be organized in a usually incomplete matrix consisting of GCM (global climate model) x RCM combinations. When simple ensemble averages are calculated, each GCM will effectively be weighted by the number of times it has been downscaled. In order to facilitate more equal and less arbitrary weighting among downscaled GCM results, we present a method to emulate the missing combinations in such a matrix, enabling equal weighting among participating GCMs and hence among regional consequences of large-scale climate change simulated by each GCM. This method is based on a traditional Analysis of Variance (ANOVA) approach. The method is applied and studied for fields of seasonal average temperature, precipitation and surface wind and for the 10-year return value of daily precipitation and of 10-m wind speed for a completely filled matrix consisting of 5 GCMs and 4 RCMs. We quantify the skill of the two averaging methods for different numbers of missing simulations and show that ensembles where lacking members have been emulated by the ANOVA technique are better at representing the full ensemble than corresponding simple ensemble averages, particularly in cases where only a few model combinations are absent. The technique breaks down when the number of missing simulations reaches the sum of the numbers of GCMs and RCMs. Also, the method is only useful when inter-simulation variability is limited. This is the case for the average fields that have been studied, but not for the extremes. We have developed analytical expressions for the degree of improvement obtained with the present method, which quantify this conclusion.


2021 ◽  
Author(s):  
Ole Bøssing Christensen ◽  
Erik Kjellström

Abstract Collections of large ensembles of regional climate model (RCM) downscaled climate data for particular regions and scenarios can be organized in a usually incomplete matrix consisting of GCM (global climate model) x RCM combinations. When simple ensemble averages are calculated, each GCM will effectively be weighted by the number of times it has been downscaled. In order to facilitate more equal and less random weighting among downscaled GCM results, we present a method to emulate the missing combinations in such a matrix, enabling equal weighting among participating GCMs and hence among regional consequences of large-scale climate change simulated by each GCM. This method is based on a traditional Analysis of Variance (ANOVA) approach. The method is applied and studied for fields of seasonal average temperature, precipitation and surface wind and for the 10-year return value of daily precipitation and of 10-m wind speed for a completely filled matrix consisting of 5 GCMs and 4 RCMs. We quantify the skill of the two averaging methods for different numbers of missing simulations and show that ensembles where lacking members have been emulated by the ANOVA technique are better at representing the full ensemble than corresponding simple ensemble averages, particularly in cases where only a few model combinations are absent. The technique breaks down when the number of missing simulations reaches the sum of the numbers of GCMs and RCMs.


2015 ◽  
Vol 28 (20) ◽  
pp. 8093-8108 ◽  
Author(s):  
Cathryn E. Birch ◽  
Malcolm J. Roberts ◽  
Luis Garcia-Carreras ◽  
Duncan Ackerley ◽  
Michael J. Reeder ◽  
...  

Abstract There are some long-established biases in atmospheric models that originate from the representation of tropical convection. Previously, it has been difficult to separate cause and effect because errors are often the result of a number of interacting biases. Recently, researchers have gained the ability to run multiyear global climate model simulations with grid spacings small enough to switch the convective parameterization off, which permits the convection to develop explicitly. There are clear improvements to the initiation of convective storms and the diurnal cycle of rainfall in the convection-permitting simulations, which enables a new process-study approach to model bias identification. In this study, multiyear global atmosphere-only climate simulations with and without convective parameterization are undertaken with the Met Office Unified Model and are analyzed over the Maritime Continent region, where convergence from sea-breeze circulations is key for convection initiation. The analysis shows that, although the simulation with parameterized convection is able to reproduce the key rain-forming sea-breeze circulation, the parameterization is not able to respond realistically to the circulation. A feedback of errors also occurs: the convective parameterization causes rain to fall in the early morning, which cools and wets the boundary layer, reducing the land–sea temperature contrast and weakening the sea breeze. This is, however, an effect of the convective bias, rather than a cause of it. Improvements to how and when convection schemes trigger convection will improve both the timing and location of tropical rainfall and representation of sea-breeze circulations.


2017 ◽  
Vol 114 (6) ◽  
pp. 1258-1263 ◽  
Author(s):  
J. David Neelin ◽  
Sandeep Sahany ◽  
Samuel N. Stechmann ◽  
Diana N. Bernstein

Precipitation accumulations, integrated over rainfall events, can be affected by both intensity and duration of the storm event. Thus, although precipitation intensity is widely projected to increase under global warming, a clear framework for predicting accumulation changes has been lacking, despite the importance of accumulations for societal impacts. Theory for changes in the probability density function (pdf) of precipitation accumulations is presented with an evaluation of these changes in global climate model simulations. We show that a simple set of conditions implies roughly exponential increases in the frequency of the very largest accumulations above a physical cutoff scale, increasing with event size. The pdf exhibits an approximately power-law range where probability density drops slowly with each order of magnitude size increase, up to a cutoff at large accumulations that limits the largest events experienced in current climate. The theory predicts that the cutoff scale, controlled by the interplay of moisture convergence variance and precipitation loss, tends to increase under global warming. Thus, precisely the large accumulations above the cutoff that are currently rare will exhibit increases in the warmer climate as this cutoff is extended. This indeed occurs in the full climate model, with a 3 °C end-of-century global-average warming yielding regional increases of hundreds of percent to >1,000% in the probability density of the largest accumulations that have historical precedents. The probabilities of unprecedented accumulations are also consistent with the extension of the cutoff.


2014 ◽  
Vol 119 (13) ◽  
pp. 8169-8188 ◽  
Author(s):  
Paul Glantz ◽  
Adam Bourassa ◽  
Andreas Herber ◽  
Trond Iversen ◽  
Johannes Karlsson ◽  
...  

2010 ◽  
Vol 23 (6) ◽  
pp. 1374-1391 ◽  
Author(s):  
Guang J. Zhang ◽  
Andrew M. Vogelmann ◽  
Michael P. Jensen ◽  
William D. Collins ◽  
Edward P. Luke

Abstract This study examines 6 yr of cloud properties observed by the Moderate Resolution Imaging Spectroradiometer (MODIS) on board the NASA Terra satellite in five prominent marine boundary layer (MBL) cloud regions (California, Peru, Canary, Angola, and Australia) and investigates their relationships with near-surface meteorological parameters obtained from NCEP reanalyses. About 62 000 independent scenes are used to examine the instantaneous relationships between cloud properties and meteorological parameters that may be used for global climate model (GCM) diagnostics and parameterization. Cloud liquid water path (LWP) generally increases with lower-tropospheric stability (LTS) and lifting condensation level (LCL), whereas cloud drizzle frequency is favored by weak LTS and negligible cold air advection. Cloud fraction (CF) depends strongly on variations in LTS, and to a lesser extent on surface air temperature advection and LCL, although the relationships vary from region to region. The authors propose capturing the effects of these three parameters on CF via their linear combination in terms of a single parameter, the effective lower-tropospheric stability (eLTS). Results indicate that eLTS offers a marked improvement over LTS alone in explaining the median CF variations within the different study regions. A parameterization of CF in terms of eLTS is provided, which produces results that are improved over those of Klein and Hartmann’s LTS-only parameterization. However, the new parameterization may not predict the observed variability correctly, and the authors propose a method that might address this shortcoming via a statistical approach.


2018 ◽  
Vol 52 (5-6) ◽  
pp. 2685-2702 ◽  
Author(s):  
Elisa Palazzi ◽  
Luca Mortarini ◽  
Silvia Terzago ◽  
Jost von Hardenberg

2020 ◽  
Author(s):  
Richard Bintanja ◽  
Karin van der Wiel ◽  
Eveline van der Linden ◽  
Jesse Reusen ◽  
Linda Bogerd ◽  
...  

<p>The Arctic region is projected to experience amplified warming as well as strongly increasing precipitation rates. Equally important to trends in the mean climate are changes in interannual variability, but changes in precipitation fluctuations are highly uncertain and the associated processes unknown. Here we use various state-of-the-art global climate model simulations to show that interannual variability of Arctic precipitation will likely increase markedly (up to 40% over the 21<sup>st</sup> century), especially in summer. This can be attributed to increased poleward atmospheric moisture transport variability associated with enhanced moisture content, possibly modulated by atmospheric dynamics. Because both the means and variability of Arctic precipitation will increase, years/seasons with excessive precipitation will occur more often, as will the associated impacts.</p>


2015 ◽  
Vol 15 (7) ◽  
pp. 10085-10122 ◽  
Author(s):  
C. McLandress ◽  
T. G. Shepherd ◽  
A. I. Jonsson ◽  
T. von Clarmann ◽  
B. Funke

Abstract. A method is proposed for merging different nadir-sounding climate data records using measurements from high resolution limb sounders to provide a transfer function between the different nadir measurements. The nadir-sounding records need not be overlapping so long as the limb-sounding record bridges between them. The method is applied to global mean stratospheric temperatures from the NOAA Climate Data Records based on the Stratospheric Sounding Unit (SSU) and the Advanced Microwave Sounding Unit-A (AMSU), extending the SSU record forward in time to yield a continuous data set from 1979 to present. SSU and AMSU are bridged using temperature measurements from the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS), which is of high enough vertical resolution to accurately represent the weighting functions of both SSU and AMSU. For this application, a purely statistical approach is not viable since the different nadir channels are not sufficiently linearly independent, statistically speaking. The extended SSU global-mean data set is in good agreement with temperatures from the Microwave Limb Sounder (MLS) on the Aura satellite, with both exhibiting a cooling trend of ~ 0.6 ± 0.3 K decade−1 in the upper stratosphere from 2004–2012. The extended SSU data set also compares well with chemistry-climate model simulations over its entire record, including the contrast between the weak cooling seen over 1995–2004 compared with the large cooling seen in the period 1986–1995 of strong ozone depletion.


Sign in / Sign up

Export Citation Format

Share Document