scholarly journals Relationships between photosynthesis and formaldehyde as a probe of isoprene emission

2015 ◽  
Vol 15 (8) ◽  
pp. 11763-11797 ◽  
Author(s):  
Y. Zheng ◽  
N. Unger ◽  
M. P. Barkley ◽  
X. Yue

Abstract. Atmospheric oxidation of isoprene emission from land plants affects radiative forcing of global climate change. There is an urgent need to understand the factors that control isoprene emission variability on large spatiotemporal scales but such direct observations of isoprene emission do not exist. Two readily available global-scale long-term observations hold information about surface isoprene activity: gross primary productivity (GPP) and tropospheric formaldehyde column variability (HCHOv). We analyze multi-year seasonal linear correlations between observed GPP and HCHOv. The observed GPP-HCHOv correlation patterns are used to evaluate a global Earth system model that embeds three alternative leaf-level isoprene emission algorithms. GPP and HCHOv are decoupled in the summertime southeast US (r = −0.03). In the Amazon, GPP-HCHOv are weakly correlated in March-April-May (MAM), correlated in June-July-August (JJA) and weakly anti-correlated in September-October-November (SON). Isoprene emission algorithms that include soil moisture dependence demonstrate greater skill in reproducing the observed interannual seasonal GPP-HCHOv correlations in the southeast US and the Amazon. In isoprene emission models that include soil moisture dependence, isoprene emission is correlated with photosynthesis and anti-correlated with HCHOv. In an isoprene emission model without soil moisture dependence, isoprene emission is anti-correlated with photosynthesis and correlated with HCHOv. Long-term monitoring of isoprene emission, soil moisture and meteorology is required in water-limited ecosystems to improve understanding of the factors controlling isoprene emission and its representation in global Earth system models.

2015 ◽  
Vol 15 (15) ◽  
pp. 8559-8576 ◽  
Author(s):  
Y. Zheng ◽  
N. Unger ◽  
M. P. Barkley ◽  
X. Yue

Abstract. Atmospheric oxidation of isoprene emission from land plants affects radiative forcing of global climate change. There is an urgent need to understand the factors that control isoprene emission variability on large spatiotemporal scales but such direct observations of isoprene emission do not exist. Two readily available global-scale long-term observation-based data sets hold information about surface isoprene activity: gross primary productivity (GPP) and tropospheric formaldehyde column variability (HCHOv). We analyze multi-year seasonal linear correlations between observed GPP and HCHOv. The observed GPP–HCHOv correlation patterns are used to evaluate a global Earth system model that embeds three alternative leaf-level isoprene emission algorithms. GPP and HCHOv are decoupled in the summertime in the southeast US (r=−0.03). In the Amazon, GPP and HCHOv are weakly correlated in March-April-May (MAM), correlated in June-July-August (JJA) and weakly anticorrelated in September-October-November (SON). Isoprene emission algorithms that include soil moisture dependence demonstrate greater skill in reproducing the observed interannual seasonal GPP–HCHOv correlations in the southeast US and the Amazon. In isoprene emission models that include soil moisture dependence, isoprene emission is correlated with photosynthesis and anticorrelated with HCHOv. In an isoprene emission model without soil moisture dependence, isoprene emission is anticorrelated with photosynthesis and correlated with HCHOv. Long-term monitoring of isoprene emission, soil moisture and meteorology is required in water-limited ecosystems to improve understanding of the factors controlling isoprene emission and its representation in global Earth system models.


2012 ◽  
Vol 25 (20) ◽  
pp. 7163-7172 ◽  
Author(s):  
Bruce T. Anderson ◽  
Jeff R. Knight ◽  
Mark A. Ringer ◽  
Jin-Ho Yoon ◽  
Annalisa Cherchi

Abstract Global-scale variations in the climate system over the last half of the twentieth century, including long-term increases in global-mean near-surface temperatures, are consistent with concurrent human-induced emissions of radiatively active gases and aerosols. However, such consistency does not preclude the possible influence of other forcing agents, including internal modes of climate variability or unaccounted for aerosol effects. To test whether other unknown forcing agents may have contributed to multidecadal increases in global-mean near-surface temperatures from 1950 to 2000, data pertaining to observed changes in global-scale sea surface temperatures and observed changes in radiatively active atmospheric constituents are incorporated into numerical global climate models. Results indicate that the radiative forcing needed to produce the observed long-term trends in sea surface temperatures—and global-mean near-surface temperatures—is provided predominantly by known changes in greenhouse gases and aerosols. Further, results indicate that less than 10% of the long-term historical increase in global-mean near-surface temperatures over the last half of the twentieth century could have been the result of internal climate variability. In addition, they indicate that less than 25% of the total radiative forcing needed to produce the observed long-term trend in global-mean near-surface temperatures could have been provided by changes in net radiative forcing from unknown sources (either positive or negative). These results, which are derived from simple energy balance requirements, emphasize the important role humans have played in modifying the global climate over the last half of the twentieth century.


2005 ◽  
Vol 18 (21) ◽  
pp. 4531-4544 ◽  
Author(s):  
G. Bala ◽  
K. Caldeira ◽  
A. Mirin ◽  
M. Wickett ◽  
C. Delire

Abstract A coupled climate and carbon (CO2) cycle model is used to investigate the global climate and carbon cycle changes out to the year 2300 that would occur if CO2 emissions from all the currently estimated fossil fuel resources were released to the atmosphere. By the year 2300, the global climate warms by about 8 K and atmospheric CO2 reaches 1423 ppmv. The warming is higher than anticipated because the sensitivity to radiative forcing increases as the simulation progresses. In this simulation, the rate of emissions peaks at over 30 Pg C yr−1 early in the twenty-second century. Even at the year 2300, nearly 50% of cumulative emissions remain in the atmosphere. Both soils and living biomass are net carbon sinks throughout the simulation. Despite having relatively low climate sensitivity and strong carbon uptake by the land biosphere, these model projections suggest severe long-term consequences for global climate if all the fossil fuel carbon is ultimately released into the atmosphere.


2006 ◽  
Vol 6 (1) ◽  
pp. 107-173 ◽  
Author(s):  
A. Guenther ◽  
T. Karl ◽  
P. Harley ◽  
C. Wiedinmyer ◽  
P. I. Palmer ◽  
...  

Abstract. Reactive gases and aerosols are produced by terrestrial ecosystems, processed within plant canopies, and can then be emitted into the above-canopy atmosphere. Estimates of the above-canopy fluxes are needed for quantitative earth system studies and assessments of past, present and future air quality and climate. The Model of Emissions of Gases and Aerosols from Nature (MEGAN) is described and used to quantify net terrestrial biosphere emission of isoprene into the atmosphere. MEGAN is designed for both global and regional emission modeling and has global coverage with ~1 km2 spatial resolution. Field and laboratory investigations of the processes controlling isoprene emission are described and data available for model development and evaluation are summarized. The factors controlling isoprene emissions include biological, physical and chemical driving variables. MEGAN driving variables are derived from models and satellite and ground observations. Broadleaf trees, mostly in the tropics, contribute about half of the estimated global annual isoprene emission due to their relatively high emission factors and because they are often exposed to conditions that are conducive for isoprene emission. The remaining flux is primarily from shrubs which are widespread and dominate at higher latitudes. MEGAN estimates global annual isoprene emissions of ~600 Tg isoprene but the results are very sensitive to the driving variables, including temperature, solar radiation, Leaf Area Index, and plant functional type. The annual global emission estimated with MEGAN ranges from about 500 to 750 Tg isoprene depending on the driving variables that are used. Differences in estimated emissions are more than a factor of 3 for specific times and locations. It is difficult to evaluate isoprene emission estimates using the concentration distributions simulated using chemistry and transport models due to the substantial uncertainties in other model components. However, comparison with isoprene emissions estimated from satellite formaldehyde observations indicates reasonable agreement. The sensitivity of isoprene emissions to earth system changes (e.g., climate and landcover) suggests potentially large changes in future emissions. Using temperature distributions simulated by global climate models for year 2100, MEGAN estimates that isoprene emissions increase by more than a factor of two. This is considerably greater than previous estimates and additional observations are needed to evaluate and improve the methods used to predict future isoprene emissions.


2018 ◽  
Author(s):  
Martha M. Vogel ◽  
Jakob Zscheischler ◽  
Sonia I. Seneviratne

Abstract. The frequency and intensity of climate extremes is expected to increase in many regions due to anthropogenic climate change. In Central Europe extreme temperatures are projected to change more strongly than global mean temperatures and soil moisture-temperature feedbacks significantly contribute to this regional amplification. Because of their strong societal, ecological and economic impacts, robust projections of temperature extremes are needed. Unfortunately, in current model projections, temperature extremes in Central Europe are prone to large uncertainties. In order to understand and potentially reduce uncertainties of extreme temperatures projections in Europe, we analyze global climate models from the CMIP5 ensemble for the business-as-usual high-emission scenario (RCP8.5). We find a divergent behavior in long-term projections of summer precipitation until the end of the 21st century, resulting in a trimodal distribution of precipitation (wet, dry and very dry). All model groups show distinct characteristics for summer latent heat flux, top soil moisture, and temperatures on the hottest day of the year (TXx), whereas for net radiation and large-scale circulation no clear trimodal behavior is detectable. This suggests that different land-atmosphere coupling strengths may be able to explain the uncertainties in temperature extremes. Constraining the full model ensemble with observed present-day correlations between summer precipitation and TXx excludes most of the very dry and dry models. In particular, the very dry models tend to overestimate the negative coupling between precipitation and TXx, resulting in a too strong warming. This is particularly relevant for global warming levels above 2 °C. The analysis allows for the first time to substantially reduce uncertainties in the projected changes of TXx in global climate models. Our results suggest that long-term temperature changes in TXx in Central Europe are about 20 % lower than projected by the multi-model median of the full ensemble. In addition, mean summer precipitation is found to be more likely to stay close to present-day levels. These results are highly relevant for improving estimates of regional climate-change impacts including heat stress, water supply and crop failure for Central Europe.


2010 ◽  
Vol 14 (7) ◽  
pp. 1-11 ◽  
Author(s):  
Arindam Samanta ◽  
Bruce T. Anderson ◽  
Sangram Ganguly ◽  
Yuri Knyazikhin ◽  
Ramakrishna R. Nemani ◽  
...  

Abstract Recent research indicates that the warming of the climate system resulting from increased greenhouse gas (GHG) emissions over the next century will persist for many centuries after the cessation of these emissions, principally because of the persistence of elevated atmospheric carbon dioxide (CO2) concentrations and their attendant radiative forcing. However, it is unknown whether the responses of other components of the climate system—including those related to Greenland and Antarctic ice cover, the Atlantic thermohaline circulation, the West African monsoon, and ecosystem and human welfare—would be reversed even if atmospheric CO2 concentrations were to recover to 1990 levels. Here, using a simple set of experiments employing a current-generation numerical climate model, the authors examine the response of the physical climate system to decreasing CO2 concentrations following an initial increase. Results indicate that many characteristics of the climate system, including global temperatures, precipitation, soil moisture, and sea ice, recover as CO2 concentrations decrease. However, other components of the Earth system may still exhibit nonlinear hysteresis. In these experiments, for instance, increases in stratospheric water vapor, which initially result from increased CO2 concentrations, remain present even as CO2 concentrations recover. These results suggest that identification of additional threshold behaviors in response to human-induced global climate change should focus on subcomponents of the full Earth system, including cryosphere, biosphere, and chemistry.


2016 ◽  
Vol 43 (16) ◽  
pp. 8554-8562 ◽  
Author(s):  
Nadine Nicolai‐Shaw ◽  
Lukas Gudmundsson ◽  
Martin Hirschi ◽  
Sonia I. Seneviratne

2011 ◽  
Vol 11 (6) ◽  
pp. 17941-18160 ◽  
Author(s):  
M. Kulmala ◽  
A. Asmi ◽  
H. K. Lappalainen ◽  
U. Baltensperger ◽  
J.-L. Brenguier ◽  
...  

Abstract. In this paper we describe and summarize the main achievements of the European Aerosol Cloud Climate and Air Quality Interactions project (EUCAARI). EUCAARI started on 1 January 2007 and ended on 31 December 2010 leaving a rich legacy including: (a) a comprehensive database with a year of observations of the physical, chemical and optical properties of aerosol particles over Europe, (b) the first comprehensive aerosol measurements in four developing countries, (c) a database of airborne measurements of aerosols and clouds over Europe during May 2008, (d) comprehensive modeling tools to study aerosol processes fron nano to global scale and their effects on climate and air quality. In addition a new Pan-European aerosol emissions inventory was developed and evaluated, a new cluster spectrometer was built and tested in the field and several new aerosol parameterizations and computations modules for chemical transport and global climate models were developed and evaluated. This work enabled EUCAARI to improve our understanding of aerosol radiative forcing and air quality-climate interactions. The EUCAARI results can be utilized in European and global environmental policy to assess the aerosol impacts and the corresponding abatement strategies.


2017 ◽  
Author(s):  
Fabiola Murguia-Flores ◽  
Sandra Arndt ◽  
Anita L. Ganesan ◽  
Guillermo N. Murray-Tortarolo ◽  
Edward R. C. Hornibrook

Abstract. Soil bacteria known as methanotrophs are the sole biological sink for atmospheric methane (CH4), a powerful greenhouse gas that is responsible for ~ 20 % of the human-driven increase in radiative forcing since pre-industrial times. Soil methanotrophy is controlled by a plethora of different factors, including temperature, soil texture and moisture or nitrogen content, resulting in spatially and temporally heterogeneous rates of soil methanotrophy. As a consequence, the exact magnitude of the global soil sink, as well as its temporal and spatial variability remains poorly constrained. We developed a process-based model (Methanotrophy Model; MeMo v1.0) to simulate and quantify the uptake of atmospheric CH4 by soils on the global scale. MeMo builds on previous models by Ridgwell et al. (1999) and Curry (2007) by introducing several advances, including: (1) a general analytical solution of the one-dimensional diffusion-reaction equation in porous media, (2) a refined representation of nitrogen inhibition on soil methanotrophy, and (3) updated factors governing the influence of soil moisture and temperature on CH4 oxidation rates. We show that the improved representation of these key drivers of soil methanotrophy resulted in a better fit to observational data. A global simulation of soil methanotrophy for the period 1990–2009 using MeMo yielded an average annual sink of 34.3 ± 4.3 Tg CH4 yr−1. Warm and semiarid regions (tropical deciduous forest, dense and open shrubland) had the highest CH4 uptake rates of 630 and 580 mg CH4 m−2 y−1, respectively. In these regions, favorable annual soil moisture content (~ 20 % saturation) and low seasonal temperature variations (variations


2006 ◽  
Vol 6 (11) ◽  
pp. 3181-3210 ◽  
Author(s):  
A. Guenther ◽  
T. Karl ◽  
P. Harley ◽  
C. Wiedinmyer ◽  
P. I. Palmer ◽  
...  

Abstract. Reactive gases and aerosols are produced by terrestrial ecosystems, processed within plant canopies, and can then be emitted into the above-canopy atmosphere. Estimates of the above-canopy fluxes are needed for quantitative earth system studies and assessments of past, present and future air quality and climate. The Model of Emissions of Gases and Aerosols from Nature (MEGAN) is described and used to quantify net terrestrial biosphere emission of isoprene into the atmosphere. MEGAN is designed for both global and regional emission modeling and has global coverage with ~1 km2 spatial resolution. Field and laboratory investigations of the processes controlling isoprene emission are described and data available for model development and evaluation are summarized. The factors controlling isoprene emissions include biological, physical and chemical driving variables. MEGAN driving variables are derived from models and satellite and ground observations. Tropical broadleaf trees contribute almost half of the estimated global annual isoprene emission due to their relatively high emission factors and because they are often exposed to conditions that are conducive for isoprene emission. The remaining flux is primarily from shrubs which have a widespread distribution. The annual global isoprene emission estimated with MEGAN ranges from about 500 to 750 Tg isoprene (440 to 660 Tg carbon) depending on the driving variables which include temperature, solar radiation, Leaf Area Index, and plant functional type. The global annual isoprene emission estimated using the standard driving variables is ~600 Tg isoprene. Differences in driving variables result in emission estimates that differ by more than a factor of three for specific times and locations. It is difficult to evaluate isoprene emission estimates using the concentration distributions simulated using chemistry and transport models, due to the substantial uncertainties in other model components, but at least some global models produce reasonable results when using isoprene emission distributions similar to MEGAN estimates. In addition, comparison with isoprene emissions estimated from satellite formaldehyde observations indicates reasonable agreement. The sensitivity of isoprene emissions to earth system changes (e.g., climate and land-use) demonstrates the potential for large future changes in emissions. Using temperature distributions simulated by global climate models for year 2100, MEGAN estimates that isoprene emissions increase by more than a factor of two. This is considerably greater than previous estimates and additional observations are needed to evaluate and improve the methods used to predict future isoprene emissions.


Sign in / Sign up

Export Citation Format

Share Document