scholarly journals A new voxel-based model for the determination of atmospheric weighted mean temperature in GPS atmospheric sounding

2017 ◽  
Vol 10 (6) ◽  
pp. 2045-2060 ◽  
Author(s):  
Changyong He ◽  
Suqin Wu ◽  
Xiaoming Wang ◽  
Andong Hu ◽  
Qianxin Wang ◽  
...  

Abstract. The Global Positioning System (GPS) is a powerful atmospheric observing system for determining precipitable water vapour (PWV). In the detection of PWV using GPS, the atmospheric weighted mean temperature (Tm) is a crucial parameter for the conversion of zenith tropospheric delay (ZTD) to PWV since the quality of PWV is affected by the accuracy of Tm. In this study, an improved voxel-based Tm model, named GWMT-D, was developed using global reanalysis data over a 4-year period from 2010 to 2013 provided by the United States National Centers for Environmental Prediction (NCEP). The performance of GWMT-D was assessed against three existing empirical Tm models – GTm-III, GWMT-IV, and GTm_N – using different data sources in 2014 – the NCEP reanalysis data, surface Tm data provided by Global Geodetic Observing System and radiosonde measurements. The results show that the new GWMT-D model outperforms all the other three models with a root-mean-square error of less than 5.0 K at different altitudes over the globe. The new GWMT-D model can provide a practical alternative Tm determination method in real-time GPS-PWV remote sensing systems.

2016 ◽  
Author(s):  
Changyong He ◽  
Suqin Wu ◽  
Xiaoming Wang ◽  
Andong Hu ◽  
Kefei Zhang

Abstract. The Global Positioning System (GPS) has been regarded as a powerful atmospheric observing system for determining precipitable water vapour (PWV) nowadays. One of the most critical variables in PWV remote sensing using GPS technique is the zenith tropospheric delay (ZTD). The conversion from ZTD to PWV requires a good knowledge of the atmospheric-weighted-mean temperature (Tm) over the station. Thus the quality of PWV is affected by the accuracy of both ZTD and Tm. In this study, an improved voxel-based Tm model, named GWMT−D, was developed and validated using global reanalysis data from 2010 to 2014 provided by NCEP-DOE Reanalysis 2 data (NCEP2). The performance of GWMT−D, along with other three selected empirical Tm models, GTm−III, GWMT−IV and GTm_N, was assessed with reference Tm derived from different sources – the NCEP2, Global Geodetic Observing System (GGOS) data and radiosonde measurements. The results showed that the new GWMT−D model outperformed all the other three models with a root-mean-square error of less than 5.0 K at different altitudes over the globe. The new GWMT−D model can provide an alternative Tm determination method in real-time/near real-time GPS-PWV remote sensing system.


2021 ◽  
Vol 13 (19) ◽  
pp. 3887
Author(s):  
Hai Zhu ◽  
Kejie Chen ◽  
Guanwen Huang

The weighted mean temperature (Tm) is a crucial parameter for determining the tropospheric delay in transforming precipitable water vapor. We used the reanalysis data provided by European Centre for Medium-Range Weather Forecasts (ECMWF) to analyze the distribution characteristics of Tm in the vertical direction in China. To address the problem that the precision of the traditional linear function model is limited in fitting the Tm profile, a scheme using the linear and Fourier functions to fit the Tm profile was constructed. Based on the least squares principle (LSQ) to fit the change in its coefficients over time, a Tm model for China with nonlinear elevation correction (CTm-h) was constructed. The experimental results show that, using ECMWF and radiosonde data to evaluate the precision of the CTm-h model, the RMS is 3.43 K and 4.64 K, respectively. Compared to GPT2w, the precision of the CTm-h model in China is increased by about 26.8%. The CTm-h model provides a significant improvement in the correction effect of Tm in the vertical direction, and the Tm profile calculated by the model is closer to the reference value.


2021 ◽  
Vol 13 (15) ◽  
pp. 3008
Author(s):  
Lijie Guo ◽  
Liangke Huang ◽  
Junyu Li ◽  
Lilong Liu ◽  
Ling Huang ◽  
...  

Tropospheric delay is a major error source in the Global Navigation Satellite System (GNSS), and the weighted mean temperature (Tm) is a key parameter in precipitable water vapor (PWV) retrieval. Although reanalysis products like the National Centers for Environmental Prediction (NCEP) and the European Center for Medium-Range Weather Forecasts (ECMWF) Re-Analysis-Interim (ERA-Interim) data have been used to calculate and model the tropospheric delay, Tm, and PWV, the limitations of the temporal and spatial resolutions of the reanalysis data have affected their performance. The release of the fifth-generation accurate global atmospheric reanalysis (ERA5) and the second Modern-Era Retrospective analysis for Research and Applications (MERRA-2) provide the opportunity to overcome these limitations. The performances of the zenith tropospheric delay (ZTD), zenith wet delay (ZWD), Tm, and zenith hydrostatic delay (ZHD) of ERA5 and MERRA-2 data from 2016 to 2017 were evaluated in this work using GNSS ZTD and radiosonde data over the globe. Taking GNSS ZTD as a reference, the ZTD calculated from MERRA-2 and ERA5 pressure-level data were evaluated in temporal and spatial scales, with an annual mean bias and root mean square (RMS) of 2.3 and 10.9 mm for ERA5 and 4.5 and 13.1 mm for MERRA-2, respectively. Compared to radiosonde data, the ZHD, ZWD, and Tm derived from ERA5 and MERRA-2 data were also evaluated on temporal and spatial scales, with annual mean bias values of 1.1, 1.7 mm, and 0.14 K for ERA5 and 0.5, 4.8 mm, and –0.08 K for MERRA-2, respectively. Meanwhile, the annual mean RMS was 4.5, 10.5 mm, and 1.03 K for ERA5 and 4.4, 13.6 mm, and 1.17 K for MERRA-2, respectively. Tropospheric parameters derived from MERRA-2 and ERA5, with improved temporal and spatial resolutions, can provide a reference for GNSS positioning and PWV retrieval.


2020 ◽  
Vol 12 (7) ◽  
pp. 1098
Author(s):  
Pedro Mateus ◽  
João Catalão ◽  
Virgílio B. Mendes ◽  
Giovanni Nico

The Global Navigation Satellite System (GNSS) meteorology contribution to the comprehension of the Earth’s atmosphere’s global and regional variations is essential. In GNSS processing, the zenith wet delay is obtained using the difference between the zenith total delay and the zenith hydrostatic delay. The zenith wet delay can also be converted into precipitable water vapor by knowing the atmospheric weighted mean temperature profiles. Improving the accuracy of the zenith hydrostatic delay and the weighted mean temperature, normally obtained using modeled surface meteorological parameters at coarse scales, leads to a more accurate and precise zenith wet delay estimation, and consequently, to a better precipitable water vapor estimation. In this study, we developed an hourly global pressure and temperature (HGPT) model based on the full spatial and temporal resolution of the new ERA5 reanalysis produced by the European Centre for Medium-Range Weather Forecasts (ECMWF). The HGPT model provides information regarding the surface pressure, surface air temperature, zenith hydrostatic delay, and weighted mean temperature. It is based on the time-segmentation concept and uses the annual and semi-annual periodicities for surface pressure, and annual, semi-annual, and quarterly periodicities for surface air temperature. The amplitudes and initial phase variations are estimated as a periodic function. The weighted mean temperature is determined using a 20-year time series of monthly data to understand its seasonality and geographic variability. We also introduced a linear trend to account for a global climate change scenario. Data from the year 2018 acquired from 510 radiosonde stations downloaded from the National Oceanic and Atmospheric Administration (NOAA) Integrated Global Radiosonde Archive were used to assess the model coefficients. Results show that the GNSS meteorology, hydrological models, Interferometric Synthetic Aperture Radar (InSAR) meteorology, climate studies, and other topics can significantly benefit from an ERA5 full-resolution model.


Author(s):  
Z. X. Chen ◽  
L. L. Liu ◽  
L. K. Huang ◽  
Q. T. Wan ◽  
X. Q. Mo

Abstract. The tropospheric weighted mean temperature (Tm) is one of the key characteristic parameters in the troposphere, which plays an important role in the conversion of Zenith Wet Delay (ZWD) to atmospheric Precipitable Water Vapor (PWV). The precision of Global Navigation Satellite System (GNSS) inversion of PWV can be significantly improved with the accurate calculation of Tm. Due to the strong nonlinear mapping ability of Back Propagation (BP) neural network, the algorithm can be used to excavate the law with massive data. In term of the nonlinear and non-stationary characteristics of GNSS precipitable water vapor, in this paper, we proposes a forecast method of GNSS precipitable water vapor based on BP neural network, which can modelling the weighted mean temperature of troposphere. The traditional BP neural network has some shortcomings, such as large amount of calculation, long training time and easy to appear “over-fitting” phenomenon and so on. In order to optimize the deficiency and numerical simulation, the three characteristic values include water vapor pressure, surface pressure and surface temperature provided are selected as input parameters, named as BP_Tm. The optimal initialization parameters of the model were obtained from the 2016 radiosonde data of 89 radiosonde stations in China, and the modeling and accuracy verification were conducted with the 2017 radiosonde data,and the accuracy of the new model was compared with the common regional Tm model. The results show the BP_Tm model has good simulation accuracy, the average deviation is −0.186K, and the root mean square error is 3.144K. When simulating the weighted mean temperature of a single station, the accuracy of the four models to simulate Tm is compared and analyzed, which the BP_Tm model can obtain good accuracy and reflect better stability and reliability.


Sign in / Sign up

Export Citation Format

Share Document