scholarly journals CALIPSO lidar calibration at 532 nm: version 4 nighttime algorithm

2018 ◽  
Vol 11 (3) ◽  
pp. 1459-1479 ◽  
Author(s):  
Jayanta Kar ◽  
Mark A. Vaughan ◽  
Kam-Pui Lee ◽  
Jason L. Tackett ◽  
Melody A. Avery ◽  
...  

Abstract. Data products from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) on board Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) were recently updated following the implementation of new (version 4) calibration algorithms for all of the Level 1 attenuated backscatter measurements. In this work we present the motivation for and the implementation of the version 4 nighttime 532 nm parallel channel calibration. The nighttime 532 nm calibration is the most fundamental calibration of CALIOP data, since all of CALIOP's other radiometric calibration procedures – i.e., the 532 nm daytime calibration and the 1064 nm calibrations during both nighttime and daytime – depend either directly or indirectly on the 532 nm nighttime calibration. The accuracy of the 532 nm nighttime calibration has been significantly improved by raising the molecular normalization altitude from 30–34 km to the upper possible signal acquisition range of 36–39 km to substantially reduce stratospheric aerosol contamination. Due to the greatly reduced molecular number density and consequently reduced signal-to-noise ratio (SNR) at these higher altitudes, the signal is now averaged over a larger number of samples using data from multiple adjacent granules. Additionally, an enhanced strategy for filtering the radiation-induced noise from high-energy particles was adopted. Further, the meteorological model used in the earlier versions has been replaced by the improved Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA-2), model. An aerosol scattering ratio of 1.01±0.01 is now explicitly used for the calibration altitude. These modifications lead to globally revised calibration coefficients which are, on average, 2–3 % lower than in previous data releases. Further, the new calibration procedure is shown to eliminate biases at high altitudes that were present in earlier versions and consequently leads to an improved representation of stratospheric aerosols. Validation results using airborne lidar measurements are also presented. Biases relative to collocated measurements acquired by the Langley Research Center (LaRC) airborne High Spectral Resolution Lidar (HSRL) are reduced from 3.6 %±2.2 % in the version 3 data set to 1.6 %±2.4 % in the version 4 release.

2017 ◽  
Author(s):  
Jayanta Kar ◽  
Mark A. Vaughan ◽  
Kam-Pui Lee ◽  
Jason L. Tackett ◽  
Melody A. Avery ◽  
...  

Abstract. Data products from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) on board Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) were recently updated following the implementation of new (version 4.1) calibration algorithms for all of the level 1 attenuated backscatter measurements. In this work we present the motivation for and the implementation of the version 4.1 nighttime 532 nm parallel channel calibration. The nighttime 532 nm calibration is the most fundamental calibration of CALIOP data, since all of CALIOP’s other radiometric calibration procedures – i.e., the 532 nm daytime calibration and the 1064 nm calibrations during both nighttime and daytime – depend either directly or indirectly on the 532 nm nighttime calibration. The accuracy of the 532 nm nighttime calibration is significantly improved by raising the molecular normalization altitude from 30–34 km to 36–39 km to substantially reduce stratospheric aerosol contamination. Due to the greatly reduced molecular number density and consequently reduced signal-to-noise ratio at the higher altitudes used to avoid aerosols, the signal is averaged over a larger number of samples. The new calibration procedure is shown to eliminate biases introduced in earlier versions and consequently leads to an improved representation of stratospheric aerosols. Validation results using airborne lidar measurements are also presented. Biases relative to collocated measurements acquired by the Langley Research Center (LaRC) airborne High Spectral Resolution Lidar (HSRL) are reduced from 3.6 % ± 2.2 % in the version 3 data set to 1.6 % ± 2.4 % in the version 4.1 release.


2019 ◽  
Vol 12 (1) ◽  
pp. 51-82 ◽  
Author(s):  
Mark Vaughan ◽  
Anne Garnier ◽  
Damien Josset ◽  
Melody Avery ◽  
Kam-Pui Lee ◽  
...  

Abstract. Radiometric calibration of space-based elastic backscatter lidars is accomplished by comparing the measured backscatter signals to theoretically expected signals computed for some well-characterized calibration target. For any given system and wavelength, the choice of calibration target is dictated by several considerations, including signal-to-noise ratio (SNR) and target availability. This paper describes the newly implemented procedures used to calibrate the 1064 nm measurements acquired by CALIOP (i.e., the Cloud-Aerosol Lidar with Orthogonal Polarization), the two-wavelength (532 and 1064 nm) elastic backscatter lidar currently flying on the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) mission. CALIOP's 532 nm channel is accurately calibrated by normalizing the molecular backscatter from the uppermost aerosol-free altitudes of the CALIOP measurement region to molecular model data obtained from NASA's Global Modeling and Assimilation Office. However, because CALIOP's SNR for molecular backscatter measurements is prohibitively lower at 1064 nm than at 532 nm, the direct high-altitude molecular normalization method is not a viable option at 1064 nm. Instead, CALIOP's 1064 nm channel is calibrated relative to the 532 nm channel using the backscatter from a carefully selected subset of cirrus cloud measurements. In this paper we deliver a full account of the revised 1064 nm calibration algorithms implemented for the version 4.1 (V4) release of the CALIPSO lidar data products, with particular emphases on the physical basis for the selection of “calibration quality” cirrus clouds and on the new averaging scheme required to characterize intra-orbit calibration variability. The V4 procedures introduce latitudinally varying changes in the 1064 nm calibration coefficients of 25 % or more, relative to previous data releases, and are shown to substantially improve the accuracy of the V4 1064 nm attenuated backscatter coefficients. By evaluating calibration coefficients derived using both water clouds and ocean surfaces as alternate calibration targets, and through comparisons to independent, collocated measurements made by airborne high spectral resolution lidar, we conclude that the CALIOP V4 1064 nm calibration coefficients are accurate to within 3 %.


2011 ◽  
Vol 11 (3) ◽  
pp. 1295-1311 ◽  
Author(s):  
R. R. Rogers ◽  
C. A. Hostetler ◽  
J. W. Hair ◽  
R. A. Ferrare ◽  
Z. Liu ◽  
...  

Abstract. The Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) instrument on the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) spacecraft has provided global, high-resolution vertical profiles of aerosols and clouds since it became operational on 13 June 2006. On 14 June 2006, the NASA Langley Research Center (LaRC) High Spectral Resolution Lidar (HSRL) was deployed aboard the NASA Langley B-200 aircraft for the first of a series of 86 underflights of the CALIPSO satellite to provide validation measurements for the CALIOP data products. To better assess the range of conditions under which CALIOP data products are produced, these validation flights were conducted under both daytime and nighttime lighting conditions, in multiple seasons, and over a large range of latitudes and aerosol and cloud conditions. This paper presents a quantitative assessment of the CALIOP 532 nm calibration (through the 532 nm total attenuated backscatter) using internally calibrated airborne HSRL underflight data and is the most extensive study of CALIOP 532 nm calibration. Results show that HSRL and CALIOP 532 nm total attenuated backscatter agree on average within 2.7% ± 2.1% (CALIOP lower) at night and within 2.9% ± 3.9% (CALIOP lower) during the day, demonstrating the accuracy of the CALIOP 532 nm calibration algorithms. Additionally, comparisons with HSRL show consistency of the CALIOP calibration before and after the laser switch in 2009 as well as improvements in the daytime version 3.01 calibration scheme compared with the version 2 calibration scheme. Potential biases and uncertainties in the methodology relevant to validating satellite lidar measurements with an airborne lidar system are discussed and found to be less than 4.5% ± 3.2% for this validation effort with HSRL. Results from this study are also compared with prior assessments of the CALIOP 532 nm attenuated backscatter calibration.


2010 ◽  
Vol 10 (11) ◽  
pp. 28355-28398 ◽  
Author(s):  
R. R. Rogers ◽  
C. A. Hostetler ◽  
J. W. Hair ◽  
R. A. Ferrare ◽  
Z. Liu ◽  
...  

Abstract. The Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) instrument on the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) spacecraft has provided global, high-resolution vertical profiles of aerosols and clouds since it became operational on 13 June 2006. On 14 June 2006, the NASA Langley Research Center (LaRC) High Spectral Resolution Lidar (HSRL) was deployed aboard the NASA Langley B-200 aircraft for the first of a series of 86 underflights of the CALIPSO satellite to provide validation measurements for the CALIOP data products. To better assess the range of conditions under which CALIOP data products are produced, these validation flights were conducted under both daytime and nighttime lighting conditions, in multiple seasons, and over a large range of latitudes and aerosol and cloud conditions. This paper presents a quantitative assessment of the CALIOP 532 nm calibration (through the 532 nm total attenuated backscatter) using an internally calibrated airborne HSRL underflight data and is the most extensive study of CALIOP 532 nm calibration. Results show that average HSRL and CALIOP 532 nm total attenuated backscatter agree on average within 2.7±2.1% (CALIOP lower) at night and within 2.9±3.9% (CALIOP lower) during the day, demonstrating the accuracy of the CALIOP 532 nm calibration algorithms. Additionally, comparisons with HSRL show consistency of the CALIOP calibration before and after the laser switch in 2009 as well as improvements in the daytime version 3.01 calibration scheme compared with the version 2 calibration scheme. Potential systematic uncertainties in the methodology relevant to validating satellite lidar measurements with an airborne lidar system are discussed and found to be less than 3.7% for this validation effort with HSRL. Results from this study are also compared to prior assessments of the CALIOP 532 nm attenuated backscatter calibration.


2009 ◽  
Vol 26 (10) ◽  
pp. 2015-2033 ◽  
Author(s):  
Kathleen A. Powell ◽  
Chris A. Hostetler ◽  
Mark A. Vaughan ◽  
Kam-Pui Lee ◽  
Charles R. Trepte ◽  
...  

Abstract The Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) mission was launched in April 2006 and has continuously acquired collocated multisensor observations of the spatial and optical properties of clouds and aerosols in the earth’s atmosphere. The primary payload aboard CALIPSO is the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP), which makes range-resolved measurements of elastic backscatter at 532 and 1064 nm and linear depolarization ratios at 532 nm. CALIOP measurements are important in reducing uncertainties that currently limit understanding of the global climate system, and it is essential that these measurements be accurately calibrated. This work describes the procedures used to calibrate the 532-nm measurements acquired during the nighttime portions of the CALIPSO orbits. Accurate nighttime calibration of the 532-nm parallel-channel data is fundamental to the success of the CALIOP measurement scheme, because the nighttime calibration is used to infer calibration across the day side of the orbits and all other channels are calibrated relative to the 532-nm parallel channel. The theoretical basis of the molecular normalization technique as applied to space-based lidar measurements is reviewed, and a comprehensive overview of the calibration algorithm implementation is provided. Also included is a description of a data filtering procedure that detects and removes spurious high-energy events that would otherwise introduce large errors into the calibration. Error estimates are derived and comparisons are made to validation data acquired by the NASA airborne high–spectral resolution lidar. Similar analyses are also presented for the 532-nm perpendicular-channel calibration technique.


2018 ◽  
Author(s):  
Mark Vaughan ◽  
Anne Garnier ◽  
Damien Josset ◽  
Melody Avery ◽  
Kam-Pui Lee ◽  
...  

Abstract. Radiometric calibration of space-based elastic backscatter lidars is accomplished by comparing the measured backscatter signals to theoretically expected signals computed for some well-characterized calibration target. For any given system and wavelength, the choice of calibration target is dictated by several considerations, including signal-to-noise ratios (SNR) and target availability. This paper describes the newly implemented procedures used to calibrate the 1064 nm measurements acquired by CALIOP (i.e., the Cloud Aerosol Lidar with Orthogonal Polarization), the two-wavelength (532 nm and 1064 nm) elastic backscatter lidar currently flying on the Cloud Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) mission. CALIOP’s 532 nm channel is accurately calibrated by normalizing the molecular backscatter from the uppermost aerosol-free altitudes of the CALIOP measurement region to molecular model data obtained from NASA’s Global Modeling and Assimilation Office. However, because CALIOP’s SNR for molecular backscatter measurements is prohibitively lower at 1064 nm than at 532 nm, the direct high altitude molecular normalization method is not a viable option at 1064 nm. Instead, CALIOP’s 1064 nm channel is calibrated relative to the 532 nm channel using the backscatter from a carefully selected subset of cirrus cloud measurements. In this paper we deliver a full account of the revised 1064 nm calibration algorithms implemented for the version 4.1 (V4) release of the CALIPSO lidar data products, with particular emphases on the physical basis for the selection of calibration quality cirrus clouds and on the new averaging scheme required to characterize intra-orbit calibration variability. The V4 procedures introduce latitudinally varying changes in the 1064 nm calibration coefficients of 25 % or more relative to previous data releases and are shown to substantially improve the accuracy of the V4 1064 nm attenuated backscatter coefficients. By evaluating calibration coefficients derived using both water clouds and ocean surfaces as alternate calibration targets, and through comparisons to independent, collocated measurements made by airborne high spectral resolution lidar, we conclude that the CALIOP V4 1064 nm calibration coefficients are accurate to within 3 %.


2014 ◽  
Vol 7 (4) ◽  
pp. 4123-4161 ◽  
Author(s):  
S. Kox ◽  
L. Bugliaro ◽  
A. Ostler

Abstract. A novel approach for the detection of cirrus clouds and the retrieval of optical thickness and top altitude based on the measurements of the Spinning Enhanced Visible and Infrared Imager (SEVIRI) aboard the geostationary Meteosat Second Generation (MSG) satellite is presented. Trained with 8 000 000 co-incident measurements of the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) aboard the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) mission the new "cirrus optical properties derived from CALIOP and SEVIRI algorithm during day and night" (COCS) algorithm utilizes a backpropagation neural network to provide accurate measurements of cirrus optical depth τ at λ =532 nm and top altitude z every 15 min covering almost one third of Earth's atmosphere. The retrieved values are validated with independent measurements of CALIOP and the optical thickness derived by an airborne high spectral resolution lidar.


2014 ◽  
Vol 7 (10) ◽  
pp. 3233-3246 ◽  
Author(s):  
S. Kox ◽  
L. Bugliaro ◽  
A. Ostler

Abstract. A novel approach for the detection of cirrus clouds and the retrieval of optical thickness and top altitude based on the measurements of the Spinning Enhanced Visible and Infrared Imager (SEVIRI) aboard the geostationary Meteosat Second Generation (MSG) satellite is presented. Trained with 8 000 000 co-incident measurements of the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) aboard the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) mission the new "cirrus optical properties derived from CALIOP and SEVIRI algorithm during day and night" (COCS) algorithm utilizes a backpropagation neural network to provide accurate measurements of cirrus optical depth τ at λ = 532 nm and top altitude z every 15 min covering almost one-third of the Earth's atmosphere. The retrieved values are validated with independent measurements of CALIOP and the optical thickness derived by an airborne high spectral resolution lidar.


2014 ◽  
Vol 14 (16) ◽  
pp. 8235-8254 ◽  
Author(s):  
G. Ancellet ◽  
J. Pelon ◽  
Y. Blanchard ◽  
B. Quennehen ◽  
A. Bazureau ◽  
...  

Abstract. Lidar and in situ observations performed during the Polar Study using Aircraft, Remote Sensing, Surface Measurements and Models, Climate, Chemistry, Aerosols and Transport (POLARCAT) campaign are reported here in terms of statistics to characterize aerosol properties over northern Europe using daily airborne measurements conducted between Svalbard and Scandinavia from 30 March to 11 April 2008. It is shown that during this period a rather large number of aerosol layers was observed in the troposphere, with a backscatter ratio at 532 nm of 1.2 (1.5 below 2 km, 1.2 between 5 and 7 km and a minimum in between). Their sources were identified using multispectral backscatter and depolarization airborne lidar measurements after careful calibration analysis. Transport analysis and comparisons between in situ and airborne lidar observations are also provided to assess the quality of this identification. Comparison with level 1 backscatter observations of the spaceborne Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) were carried out to adjust CALIOP multispectral observations to airborne observations on a statistical basis. Recalibration for CALIOP daytime 1064 nm signals leads to a decrease of their values by about 30%, possibly related to the use of the version 3.0 calibration procedure. No recalibration is made at 532 nm even though 532 nm scattering ratios appear to be biased low (−8%) because there are also significant differences in air mass sampling between airborne and CALIOP observations. Recalibration of the 1064 nm signal or correction of −5% negative bias in the 532 nm signal both could improve the CALIOP aerosol colour ratio expected for this campaign. The first hypothesis was retained in this work. Regional analyses in the European Arctic performed as a test emphasize the potential of the CALIOP spaceborne lidar for further monitoring in-depth properties of the aerosol layers over Arctic using infrared and depolarization observations. The CALIOP April 2008 global distribution of the aerosol backscatter reveal two regions with large backscatter below 2 km: the northern Atlantic between Greenland and Norway, and northern Siberia. The aerosol colour ratio increases between the source regions and the observations at latitudes above 70° N are consistent with a growth of the aerosol size once transported to the Arctic. The distribution of the aerosol optical properties in the mid-troposphere supports the known main transport pathways between the mid-latitudes and the Arctic.


2020 ◽  
Author(s):  
Mahesh Kovilakam ◽  
Larry Thomason ◽  
Nicholas Ernest ◽  
Landon Rieger ◽  
Adam Bourassa ◽  
...  

Abstract. A robust stratospheric aerosol climate data record enables the depiction of the radiative forcing of this highly variable component of climate. Since stratospheric aerosol also plays a key role in the chemical processes leading to ozone depletion, stratosphere is one of the crucial parameters in understanding climate change in the past and potential changes in the future. As a part of Stratospheric-tropospheric Processes and their Role in Climate (SPARC) Stratospheric Sulfur and its Role in Climate (SSiRC) activity, the Global Space-based Stratospheric Aerosol Climatology (GloSSAC) was created (Thomason et al., 2018) to support the World Climate Research Programme (WCRP)’s Coupled Model Intercomparison Project Phase 6 (CMIP6) (Zanchettin et al., 2016). This data set is a follow-on to one created as a part of Stratosphere-Troposphere Process and their Role in Climate Project (SPARC)’s Assessment of Stratospheric Aerosol Properties (ASAP) activity(SPARC, 2006) and a data created for Chemistry-Climate Model Initiative (CCMI) in 2012 (Eyring and Lamarque, 2012). Herein, we discuss changes to the original release version including those as a part of v1.1 that was released in September 2018 that primarily corrects an error in the conversion of Cryogenic Limb Array Etalon Spectrometer (CLAES) data to Stratospheric Aerosol and Gas Experiment (SAGE) II wavelengths, and the new release, v2.0. Version 2.0 is focused on improving the post-SAGE II era (after 2005) with the goal to mitigate elevated aerosol extinction in the lower stratosphere at mid and high latitudes noted in v1.0 as noted in Thomason et al. (2018). Changes include the use of version 7.0 of Optical Spectrograph and InfraRed Imaging System(OSIRIS), the recently released Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) Lidar Level 3 Stratospheric Aerosol profile monthly product, and the new addition of SAGE III/ISS. Although, the version 7.0 OSIRIS data is substantially improved at its native wavelength of 750 nm, conversion to 525 nm using a constant Angstrom exponent often results in disagreements with SAGEII/ SAGE III/ISS overlap measurements. We, therefore use an observed relationship between OSIRIS extinction at 750 nm and SAGEII/SAGE III/ISS extinction at 525 nm to derive Altitude-Latitude based monthly climatology of Angstrom exponent to compute extinction at 525 nm, resulting in a better agreement between OSIRIS and SAGE measurements. We employ a similar approach to convert OSIRIS 750 nm extinction to 1020 nm extinction for the post-SAGEII period. Additionally, we incorporate the recently released standard CALIPSO stratospheric aerosol profile monthly product into GloSSAC with an improved conversion technique of 532 nm backscatter coefficient to extinction using an observed relationship between OSIRIS 525 nm extinction and CALIPSO 532 nm backscatter. We also investigate for any cloud contamination in OSIRIS/standard CALIPSO stratospheric aerosol product, which may have caused apparent enhancement in the aerosol extinction particularly in the lower stratosphere. SAGE III/ISS data is also incorporated in GloSSAC to extend the climatology to the present and to test the approach used to correct OSIRIS/CALIPSO data. The GloSSAC v2.0 netcdf file is accessible at https://doi.org/10.5067/glossac-l3-v2.0 (Thomason, 2020).


Sign in / Sign up

Export Citation Format

Share Document