scholarly journals Introducing the 4.4 km spatial resolution Multi-Angle Imaging SpectroRadiometer (MISR) aerosol product

2020 ◽  
Vol 13 (2) ◽  
pp. 593-628 ◽  
Author(s):  
Michael J. Garay ◽  
Marcin L. Witek ◽  
Ralph A. Kahn ◽  
Felix C. Seidel ◽  
James A. Limbacher ◽  
...  

Abstract. The Multi-angle Imaging SpectroRadiometer (MISR) instrument has been operational on the National Aeronautics and Space Administration (NASA) Earth Observing System (EOS) Terra satellite since early 2000, creating an extensive data set of global Earth observations. Here we introduce the latest version of the MISR aerosol products. The level 2 (swath) product, which is reported on a 4.4 km spatial grid, is designated as version 23 (V23) and contains retrieved aerosol optical depth (AOD) and aerosol particle property information derived from MISR's multi-angle observations over both land and water. The changes from the previous version of the algorithm (V22) have significant impacts on the data product and its interpretation. The V23 data set is created from two separate retrieval algorithms that are applied over dark water and land surfaces, respectively. Besides increasing the horizontal resolution to 4.4 km compared with the coarser 17.6 m resolution in V22 and streamlining the format and content, the V23 product has added geolocation information, pixel-level uncertainty estimates, and improved cloud screening. MISR data can be obtained from the NASA Langley Research Center Atmospheric Science Data Center at https://eosweb.larc.nasa.gov/project/misr/misr_table (last access: 11 October 2019). The version number for the V23 level 2 aerosol product is F13_0023. The level 3 (gridded) aerosol product is still reported at 0.5∘×0.5∘ spatial resolution with results aggregated from the higher-resolution level 2 data. The format and content at level 3 have also been updated to reflect the changes made at level 2. The level 3 product associated with the V23 level 2 product version is designated as F15_0032. Both the level 2 and level 3 products are now provided in NetCDF format.

2019 ◽  
Author(s):  
Michael J. Garay ◽  
Marcin L. Witek ◽  
Ralph A. Kahn ◽  
Felix C. Seidel ◽  
James A. Limbacher ◽  
...  

Abstract. The Multi-angle Imaging SpectroRadiometer (MISR) instrument has been operational on the National Aeronautics and Space Administration (NASA) Earth Observing System (EOS) Terra satellite since early 2000, creating an extensive data set of global Earth observations. Here we introduce the latest version of the MISR aerosol products. The Level 2 (swath) product, which is reported on a 4.4 km spatial grid, is designated Version 23 (V23) and contains retrieved aerosol optical depth (AOD) and aerosol particle property information derived from MISR's multi-angle observations over both land and water. The changes from the previous version of the algorithm (V22) have significant impacts on the data product and its interpretation. The V23 data set is created from two separate retrieval algorithms that are applied over dark water and land surfaces, respectively. Besides increasing the horizontal resolution to 4.4 km compared with the coarser 17.6 m resolution in V22, and streamlining the format and content, the V23 product has added geolocation information, pixel-level uncertainty estimates, and improved cloud screening. MISR data can be obtained from the NASA Langley Research Center Atmospheric Science Data Center at https://eosweb.larc.nasa.gov/project/misr/misr_table. The version number for the V23 Level 2 aerosol product is F13_0023. The Level 3 (gridded) aerosol product is still reported at 0.5° x 0.5° spatial resolution with results aggregated from the higher-resolution Level 2 data. The format and content at Level 3 have also been updated to reflect the changes made at Level 2. The Level 3 product associated with the V23 Level 2 product version is designated F15_0032. Both the Level 2 and Level 3 products are now provided in NetCDF format.


2020 ◽  
Author(s):  
Christoph Dahle

<p>This presentation will give an overview of GFZ's activities within the GRACE-FO Science Data System (SDS) including the current status of Level-2 and Level-3 products.</p>


2014 ◽  
Vol 7 (12) ◽  
pp. 4317-4340 ◽  
Author(s):  
R. R. Rogers ◽  
M. A. Vaughan ◽  
C. A. Hostetler ◽  
S. P. Burton ◽  
R. A. Ferrare ◽  
...  

Abstract. The Cloud–Aerosol Lidar with Orthogonal Polarization (CALIOP) instrument onboard the Cloud–Aerosol Lidar and Pathfinder Satellite Observations (CALIPSO) spacecraft has provided over 8 yr of nearly continuous vertical profiling of Earth's atmosphere. In this paper we investigate the V3.01 and V3.02 CALIOP 532 nm aerosol layer optical depth (AOD) product (i.e the AOD of individual layers) and the column AOD product (i.e., the sum AOD of the complete column) using an extensive database of coincident measurements. The CALIOP AOD measurements and AOD uncertainty estimates are compared with collocated AOD measurements collected with the NASA High Spectral Resolution Lidar (HSRL) in the North American and Caribbean regions. In addition, the CALIOP aerosol lidar ratios are investigated using the HSRL measurements. In general, compared with the HSRL values, the CALIOP layer AOD are biased high by less than 50% for AOD < 0.3 with higher errors for higher AOD. Less than 60% of the HSRL AOD measurements are encompassed within the CALIOP layer 1 SD uncertainty range (around the CALIOP layer AOD), so an error estimate is created to encompass 68% of the HSRL data. Using this new metric, the CALIOP layer AOD error is estimated using the HSRL layer AOD as ±0.035 ± 0.05 · (HSRL layer AOD) at night and ±0.05 ± 0.05 · (HSRL layer AOD) during the daytime. Furthermore, the CALIOP layer AOD error is found to correlate with aerosol loading as well as aerosol subtype, with the AODs in marine and dust layers agreeing most closely with the HSRL values. The lidar ratios used by CALIOP for polluted dust, polluted continental, and biomass burning layers are larger than the values measured by the HSRL in the CALIOP layers, and therefore the AODs for these types retrieved by CALIOP were generally too large. We estimated the CALIOP column AOD error can be expressed as ±0.05 ± 0.07 · (HSRL column AOD) at night and ±0.08 ± 0.1 · (HSRL column AOD) during the daytime. Multiple sources of error contribute to both positive and negative errors in the CALIOP column AOD, including multiple layers in the column of different aerosol types, lidar ratio errors, cloud misclassification, and undetected aerosol layers. The undetected layers were further investigated and we found that the layer detection algorithm works well at night, although undetected aerosols in the free troposphere introduce a mean underestimate of 0.02 in the column AOD in the data set examined. The decreased signal-to-noise ratio (SNR) during the daytime led to poorer performance of the layer detection. This caused the daytime CALIOP column AOD to be less accurate than during the nighttime, because CALIOP frequently does not detect optically thin aerosol layers with AOD < 0.1. Given that the median vertical extent of aerosol detected within any column was 1.6 km during the nighttime and 1.5 km during the daytime, we can estimate the minimum extinction detection threshold to be 0.012 km−1 at night and 0.067 km−1 during the daytime in a layer median sense. This extensive validation of level 2 CALIOP AOD products extends previous validation studies to nighttime lighting conditions and provides independent measurements of the lidar ratio; thus, allowing the assessment of the effect on the CALIOP AOD of using inappropriate lidar ratio values in the extinction retrieval.


2014 ◽  
Vol 6 (1) ◽  
pp. 221-233 ◽  
Author(s):  
R. Lindstrot ◽  
M. Stengel ◽  
M. Schröder ◽  
J. Fischer ◽  
R. Preusker ◽  
...  

Abstract. A global time series of total columnar water vapour from combined data of the Medium Resolution Imaging Spectrometer (MERIS) onboard ESA's Environmental Satellite (ENVISAT) and the Special Sensor Microwave/Imager (SSM/I) onboard the satellite series of the US Defense Meteorological Satellite Program (DMSP) is presented. The unique data set, generated in the framework of the ESA Data User Element (DUE) GlobVapour project, combines atmospheric water vapour observations over land and ocean, derived from measurements in the near-infrared and the microwave range, respectively. Daily composites and monthly means of total columnar water vapour are available as global maps on rectangular latitude–longitude grids with a spatial resolution of 0.05° × 0.05° over land and 0.5° × 0.5° over ocean for the years 2003 to 2008. The data are stored in NetCDF files and is fully compliant with the NetCDF Climate Forecast convention. Through the combination of high-quality microwave observations and near-infrared observations over ocean and land surfaces, respectively, the data set provides global coverage. The combination of both products is carried out such that the individual properties of the microwave and near-infrared products, in particular their uncertainties, are not modified by the merging process and are therefore well defined. Due to the global coverage and the provided uncertainty estimates this data set is potentially of high value for climate research. The SSM/I-MERIS TCWV data set is freely available via the GlobVapour project web page (www.globvapour.info) with associated doi:10.5676/DFE/WV_COMB/FP. In this paper, the details of the data set generation, i.e. the satellite data used, the retrieval techniques and merging approaches, are presented. The derived level 3 products are compared to global radiosonde data from the GCOS upper air network (GUAN), showing a high agreement with a root-mean-square deviation of roughly 4.4 kg m−2 and a small wet bias well below 1 kg m−2. Furthermore, the data set is shown to be free of seasonal biases. The consistency of the MERIS and SSM/I retrievals is demonstrated by applying the MERIS retrieval to sun glint areas over ocean.


2021 ◽  
Author(s):  
Philippe Garnesson ◽  
Antoine Mangin ◽  
Julien Demaria ◽  
Marine Bretagnon ◽  
Odile Hembise Fanton d'Andon

&lt;p&gt;The Ocean Colour Instrument (OLCI) on-board the Sentinel-3A and 3B satellites with a 300 m spatial resolution has a major advantage compared to other satellite missions with a typical 1 km spatial resolution. The chlorophyll-a product derived from OLCI&amp;#8217;s 300 m measurement facilitates many applications in marine and coastal ecology, from ecosystem modeling, to fisheries management, and monitoring of water quality. The OLCI 300 m chlorophyll-a swath data (Level-2) are operationally disseminated in NRT mode by the EUMETSAT agency. The Copernicus Marine Environment Monitoring Service (CMEMS) eases the usage of these Level-2 (swath data) by providing Level-3 (daily mapped gridded files) at global and regional level.&lt;/p&gt;&lt;p&gt;This study highlights the first release of a 300 m NRT global daily chlorophyll-a product based on the merging of OLCI S3A and S3B. It will be routinely disseminated in the frame of CMEMS in May 2021. Before this date, the resolution of the CMEMS Chlorophyll products was 4km at global level and 1km over some European regional seas This 300 m product will be based on the Copernicus-GlobColour processor already used by CMEMS for the Global chlorophyll-a product and the regional Atlantic daily interpolated product. The daily image will correspond to a large matrix of 32400x64800 pixels with chlorophyll-a data provided along the coastline (200 km). CMEMS provides to the end-user facilities to extract data on his area and period of interest.&lt;/p&gt;&lt;p&gt;This new product will take benefit of a new EUMETSAT&amp;#8217;s Level-2 product baseline which should be switched operationally in NRT mode mid-February 2021. This new baseline improves mainly the System Vicarious Calibration (SVC) gains of both S3A and S3B and the associated quality flags. The Chlorophyll-a OC4ME algorithm has been also improved with the use of the Colour Index algorithm for clear water. The assessment of this new OC4ME chlorophyll-a product (based on tandem data) shows a very good correlation between S3A and S3B. A regression between a daily S3A and S3B global product provides a R2 of 0.98 with a respective slope and offset of 1.0 and 0.005. However, some limitations concerning the level-2 upstream products have been identified. Details about the merging procedure, inter-comparison with existing product and illustrations of results will be presented.&lt;/p&gt;


2014 ◽  
Vol 7 (1) ◽  
pp. 59-88 ◽  
Author(s):  
R. Lindstrot ◽  
M. Stengel ◽  
M. Schröder ◽  
J. Fischer ◽  
R. Preusker ◽  
...  

Abstract. A global time series of total columnar water vapour from combined data of the Medium Resolution Imaging Spectrometer (MERIS) onboard ESA's Environmental Satellite (ENVISAT) and the Special Sensor Microwave/Imager (SSM/I) onboard the satellite series of the US Defense Meteorological Satellite Program (DMSP) is presented. The unique dataset, generated in the framework of the ESA Data User Element (DUE) GlobVapour project, combines atmospheric water vapour observations over land and ocean, derived from measurements in the near infrared and the microwave range, respectively. Daily composites and monthly means of total columnar water vapour are available as global maps on rectangular latitude-longitude grids with a spatial resolution of 0.05° × 0.05° over land and 0.5° × 0.5° over ocean for the years 2003 to 2008. The data is stored in NetCDF files and is fully compliant with the NetCDF Climate Forecast convention. Through the combination of high quality microwave observations and near infrared observations over ocean and land surfaces, respectively, the dataset provides global coverage. The combination of both products is carried out such that the individual properties of the microwave and near-infrared products, in particular their uncertainties, are not changed and therefore well defined. Due to the global coverage and the provided uncertainty estimates this data set is potentially of high value for climate research. The SSM/I-MERIS TCWV data set is freely available via the GlobVapour project web page with associated doi (doi:10.5676/DFE/WV_COMB/FP). In this paper, the details of the dataset generation, i.e. the satellite data used, the retrieval techniques and merging approaches are presented. The derived level 3 products are compared to global radiosonde data from the GCOS upper air network (GUAN), showing a high agreement with a root mean square deviation of roughly 4.4 kg m−2 and a small wet bias well below 1 kg m−2. Furthermore, the data set is shown to be free of seasonal biases. The consistency of the MERIS and SSM/I retrievals is demonstrated by applying the MERIS retrieval to sun glint areas over ocean.


Author(s):  
Jasem A. Albanai

The concentration of chlorophyll-a (chlor-a) is an important indicator of marine water quality, as it is considered an indicator of the phytoplankton density in a specific area. Remote sensing techniques have been developed to measure the near-surface concentration of chlor-a in water across the correlation between spectral bands and in situ data. This algorithm applies to sensors of varying spatial, temporal and spectral resolutions. However, in this study, chlor-a level 2 and 3 products of SNPP &ndash; VIIRS spectrometer (Equation OC3) of NASA OceanColor suite was relied upon to study the spatial and temporal distribution of chlor-a concentration in the Arabian Gulf (also known as the Persian Gulf) and the State of Kuwait&rsquo;s water (located to the north-eastern part of the Arabian Gulf) from 2012 to 2019. Ground truthing points (n = 192) matched to the level 2 products have been used to build an empirical model and cross-validate it. The correlation was positive where was 0.79 and the validation RMSE was = &plusmn; 0.64 mg/m-3. The derived algorithm was then applied to chlor-a level 3 seasonal products. Additionally, the chlor-a concentration values of Kuwaiti waters have been enhanced using the IDW algorithm to increase the spatial resolution, as it is considered as a small area compared to the spatial resolution of level 3 chlor-a products. The model derived from IDW was tested using the Mann Whitney test (Sig = 0.948 p &gt; 0.01). However, the result showed that the chlor-a concentration is higher in Kuwait Bay compared to Kuwaiti water, and it is higher in Kuwaiti water compared to the Arabian Gulf. The coasts have higher concentrations too, when compared to the open water. Generally, the chlor-a increases in winter and makes a semi-regular cycle during the years of study; this cycle is more regular in the Gulf&rsquo;s waters than in Kuwait&rsquo;s.


2013 ◽  
Vol 13 (4) ◽  
pp. 9267-9317 ◽  
Author(s):  
M. Mallet ◽  
O. Dubovik ◽  
P. Nabat ◽  
F. Dulac ◽  
R. Kahn ◽  
...  

Abstract. Aerosol absorption properties are of high importance to assess aerosol impact on regional climate. This study presents an analysis of aerosol absorption products obtained over the Mediterranean Basin or land stations in the region from multi-year ground-based AERONET and satellite observations with a focus on the Absorbing Aerosol Optical Depth (AAOD), Single Scattering Albedo (SSA) and their spectral dependence. The AAOD and Absorption Angström Exponent (AAE) data set is composed of daily averaged AERONET level 2 data from a~total of 22 Mediterranean stations having long time series, mainly under the influence of urban-industrial aerosols and/or soil dust. This data set covers the 17 yr period 1996–2012 with most data being from 2003–2011 (~89% of level-2 AAOD data). Since AERONET level-2 absorption products require a high aerosol load (AOD at 440 nm > 0.4), which is most often related to the presence of desert dust, we also consider level-1.5 SSA data, despite their higher uncertainty, and filter out data with an Angström exponent <1.0 in order to study absorption by carbonaceous aerosols. The SSA data set includes both AERONET level-2 and satellite level-3 products. Satellite-derived SSA data considered are monthly level 3 products mapped at the regional scale for the spring and summer seasons that exhibit the largest aerosol loads. The satellite SSA dataset includes the following products: (i) Multi-angle Imaging SpectroRadiometer (MISR) over 2000–2011, (ii) Ozone Monitoring Instrument (OMI) near-UV algorithm over 2004–2010, and (iii) MODerate resolution Imaging Spectroradiometer (MODIS) Deep-Blue algorithm over 2005–2011, derived only over land in dusty conditions. Sun-photometer observations show that values of AAOD at 440 nm vary between 0.024 ± 0.01 (resp. 0.040 ± 0.01) and 0.050 ± 0.01 (0.055 ± 0.01) for urban (dusty) sites. Analysis shows that the Mediterranean urban-industrial aerosols appear "moderately" absorbing with values of SSA close to ~0.94–0.95 ± 0.04 (at 440 nm) in most cases except over the large cities of Rome and Athens, where aerosol appears more absorbing (SSA ~0.89–0.90 ± 0.04). The aerosol Absorption Angström Exponent (AAE, estimated using 440 and 870 nm) is found to be larger than 1 for most sites over the Mediterranean, a manifestation of mineral dust (iron) and/or brown carbon producing the observed absorption. AERONET level-2 sun-photometer data indicate the existence of a moderate East–West gradient, with higher values over the eastern basin (AAEEast. = 1.39/AAEWest. = 1.33) due to the influence of desert dust. The North–South AAE gradient is more pronounced, especially over the western basin. Our additional analysis of AERONET level-1.5 data also shows that organic absorbing aerosols significantly affect some Mediterranean sites. These results indicate that current climate models treating organics as nonabsorbing over the Mediterranean certainly underestimate the warming effect due to carbonaceous aerosols. A~comparative analysis of the regional SSA variability has been attempted using satellite data. OMI and MODIS data show an absorbing zone (SSA ~0.90 at 470–500 nm) over Northeastern Africa that does not appear in the MISR retrievals. In contrast, MISR seems able to observe the East–West SSA gradient during summer, as also detected by AERONET. Also, the analysis of SSA provided by satellites indicates that the aerosol over the Mediterranean Sea appears less absorbing during spring (MAM) than summer (JJA).


2012 ◽  
Vol 12 (9) ◽  
pp. 23219-23260 ◽  
Author(s):  
J. A. Ruiz-Arias ◽  
J. Dudhia ◽  
C. A. Gueymard ◽  
D. Pozo-Vázquez

Abstract. The Level-3 MODIS aerosol optical depth (AOD) product offers interesting features for surface solar radiation and numerical weather modeling applications. Remarkably, the Collection 5.1 dataset extends over more than a decade, and provides daily values of AOD over a global regular grid of 1°×1° spatial resolution. However, most of the validation efforts so far have focused on Level-2 products (10-km, at original resolution) and only rarely on Level-3 (at aggregated spatial resolution of 1°×1°). In this contribution, we compare the Level-3 Collection 5.1 MODIS AOD dataset available since 2000 against observed daily AOD values at 550 nm from more than 500 AERONET ground stations around the globe. One aim of this study is to check the advisability of this MODIS dataset for surface shortwave solar radiation calculations using numerical weather models. Overall, the mean error of the dataset is 0.03 (17%, relative to the mean ground-observed AOD), with a root mean square error of 0.14 (73%, relative to the same), albeit these values are found highly dependent on geographical region. For AOD values below about 0.3 the expected error is found very similar to that of the Level-2 product. However, for larger AOD values, higher errors are found. Consequently, we propose new functions for the expected error of the Level-3 AOD, as well as for both its mean error and its standard deviation. Additionally, we investigate the role of pixel count vis-à-vis the reliability of the AOD estimates. Our results show that a higher pixel count does not necessarily turn into a more reliable AOD estimate. Therefore, we recommend to verify this assumption in the dataset at hand if the pixel count is meant to be used. We also explore to what extent the spatial aggregation from Level-2 to Level-3 influences the total uncertainty in the Level-3 AOD. In particular, we found that, roughly, half of the error might be attributable to Level-3 AOD sub-pixel variability. Finally, we use a~radiative transfer model to investigate how the Level-3 AOD uncertainty propagates into the calculated direct normal (DNI) and global horizontal (GHI) irradiances. Overall, results indicate that, for Level-3 AODs smaller than 0.5, the induced uncertainty in DNI due to the AOD uncertainty alone is below 15% on average, and below 5% for GHI (for a solar zenith angle of 30°. However, the uncertainty in AOD is highly spatially variable, and so is that in irradiance.


2020 ◽  
Author(s):  
Christoph Dahle ◽  
Michael Murböck ◽  
Frank Flechtner ◽  
Rolf König ◽  
Henryk Dobslaw ◽  
...  

&lt;p&gt;The GRACE Follow-On (GRACE-FO) mission was successfully launched on May 22&lt;sup&gt;nd&lt;/sup&gt;, 2018 and continues the 15-year data record of monthly global mass changes from the GRACE mission (2002-2017). The German Research Centre for Geosciences (GFZ) as part of the GRACE/GRACE-FO Science Data System (SDS) has recently reprocessed the complete GRACE mission data (RL06 in the SDS nomenclature). These RL06 processing standards serve as common baseline for the continuation with GRACE-FO data.&lt;/p&gt;&lt;p&gt;This presentation provides an overview of the current processing status and the validation of the GFZ GRACE/GRACE-FO RL06 gravity field products. Besides its Level-2 products (monthly sets of spherical harmonic coefficients representing the Earth's gravity potential), GFZ additionally generates user-friendly Level-3 products in collaboration with the Alfred-Wegener-Institut (AWI) and TU Dresden. These Level-3 data products comprise dedicated mass anomaly products of terrestrial water storage over non-glaciated regions, bottom pressure variations in the oceans and ice mass changes in Antarctica and Greenland, available via GFZ's Gravity Information Service (GravIS) portal (http://gravis.gfz-potsdam.de/).&lt;/p&gt;


Sign in / Sign up

Export Citation Format

Share Document