scholarly journals Airborne extractive electrospray mass spectrometry measurements of the chemical composition of organic aerosol

2021 ◽  
Vol 14 (2) ◽  
pp. 1545-1559
Author(s):  
Demetrios Pagonis ◽  
Pedro Campuzano-Jost ◽  
Hongyu Guo ◽  
Douglas A. Day ◽  
Melinda K. Schueneman ◽  
...  

Abstract. We deployed an extractive electrospray ionization time-of-flight mass spectrometer (EESI-MS) for airborne measurements of biomass burning aerosol during the Fire Influence on Regional to Global Environments and Air Quality (FIREX-AQ) study onboard the NASA DC-8 research aircraft. Through optimization of the electrospray working solution, active control of the electrospray region pressure, and precise control of electrospray capillary position, we achieved 1 Hz quantitative measurements of aerosol nitrocatechol and levoglucosan concentrations up to pressure altitudes of 7 km. The EESI-MS response to levoglucosan and nitrocatechol was calibrated for each flight, with flight-to-flight calibration variability of 60 % (1σ). Laboratory measurements showed no aerosol size dependence in EESI-MS sensitivity below particle geometric diameters of 400 nm, covering 82 % of accumulation-mode aerosol mass during FIREX-AQ. We also present a first in-field intercomparison of EESI-MS with a chemical analysis of aerosol online proton-transfer-reaction mass spectrometer (CHARON PTR-MS) and a high-resolution Aerodyne aerosol mass spectrometer (AMS). EESI-MS and CHARON PTR-MS levoglucosan concentrations were well correlated, with a regression slope of 0.94 (R2=0.77). AMS levoglucosan-equivalent concentrations and EESI-MS levoglucosan showed a greater difference, with a regression slope of 1.36 (R2=0.96), likely indicating the contribution of other compounds to the AMS levoglucosan-equivalent measurement. The total EESI-MS signal showed correlation (R2=0.9) with total organic aerosol measured by AMS, and the EESI-MS bulk organic aerosol sensitivity was 60 % of the sensitivity to levoglucosan standards.

2020 ◽  
Author(s):  
Demetrios Pagonis ◽  
Pedro Campuzano-Jost ◽  
Hongyu Guo ◽  
Douglas A. Day ◽  
Melinda K. Schueneman ◽  
...  

Abstract. We deployed an extractive electrospray ionization time-of-flight mass spectrometer (EESI-MS) for airborne measurements of biomass burning aerosol during the Fire Influence on Regional to Global Environments and Air Quality (FIREX-AQ) study onboard the NASA DC-8 research aircraft. Through optimization of the electrospray working solution, active control of the electrospray region pressure, and precise control of electrospray capillary position, we achieved 1 Hz quantitative measurements of aerosol nitrocatechol and levoglucosan concentrations up to pressure altitudes of 7 km. EESI-MS response to levoglucosan and nitrocatechol was calibrated for each flight, with flight-to-flight calibration variability of 60 % (1σ). Laboratory measurements showed no aerosol size dependence in EESI-MS sensitivity below particle geometric diameters of 400 nm, covering 82 % of accumulation mode aerosol mass during FIREX-AQ. We also present a first in-field intercomparison of EESI-MS with a chemical analysis of aerosol online proton-transfer-reaction mass spectrometer (CHARON PTR-MS) and a high-resolution Aerodyne aerosol mass spectrometer (AMS). EESI-MS and CHARON PTR-MS levoglucosan concentrations were well correlated, with a regression slope of 0.94, R2 = 0.77. AMS levoglucosan-equivalent concentrations and EESI-MS levoglucosan showed greater difference, with a regression slope of 1.36, R2 = 0.96, likely indicating the contribution of other compounds to the AMS levoglucosan-equivalent measurement. Total EESI-MS signal showed correlation (R2 = 0.9) with total organic aerosol measured by AMS, and the EESI-MS bulk organic aerosol sensitivity was 60 % of the sensitivity to levoglucosan standards.


2012 ◽  
Vol 12 (10) ◽  
pp. 26297-26349 ◽  
Author(s):  
J. E. Shilling ◽  
R. A. Zaveri ◽  
J. D. Fast ◽  
L. Kleinman ◽  
M. L. Alexander ◽  
...  

Abstract. The CARES campaign was conducted during June 2010 in the vicinity of Sacramento, California to study aerosol formation and aging in a region where anthropogenic and biogenic emissions regularly mix. Here, we describe measurements from an Aerodyne High Resolution Aerosol Mass Spectrometer (AMS), an Ionicon Proton Transfer Reaction Mass Spectrometer (PTR-MS), and trace gas detectors (CO, NO, NOx) deployed on the G-1 research aircraft to investigate ambient gas- and particle-phase chemical composition. AMS measurements showed that the particle phase is dominated by organic aerosol (OA) (85% on average) with smaller concentrations of sulfate (5%), nitrate (6%) and ammonium (3%) observed. PTR-MS data showed that isoprene dominated the biogenic volatile organic compound concentrations (BVOCs), with monoterpene concentrations generally below the detection limit. Using two different metrics, median OA concentrations and the slope of plots of OA vs. CO concentrations (i.e. ΔOA/ΔCO), we contrast organic aerosol evolution on flight days with different prevailing meteorological conditions to elucidate the role of anthropogenic and biogenic emissions on OA formation. Airmasses influenced predominantly by biogenic emissions had median OA concentrations of 2.2 μg m−3 and near zero ΔOA/ΔCO. Those influenced predominantly by anthropogenic emissions had median OA concentrations of 4.7 μg m−3 and ΔOA/ΔCO ratios of 35–44 μg m−3 ppmv−1. But, when biogenic and anthropogenic emissions mixed, OA levels were dramatically enhanced, with median OA concentrations of 11.4 μg m−3 and ΔOA/ΔCO ratios of 77–157 μg m−3 ppmv−1. Taken together, our observations show that production of OA was enhanced when anthropogenic emissions from Sacramento mixed with isoprene-rich air from the foothills. A strong, non-linear dependence of SOA yield from isoprene is the explanation for this enhancement most consistent with both the gas- and particle-phase data. If these observations are found to be robust in other seasons and in areas outside of Sacramento, regional and global aerosol modules will need to incorporate more complex representations of NOx-dependent SOA yields into their algorithms. Ultimately, accurately predicting OA mass concentrations and their effect on radiation balance will require a mechanistically-based treatment of the interactions of biogenic and anthropogenic emissions.


2013 ◽  
Vol 13 (4) ◽  
pp. 2091-2113 ◽  
Author(s):  
J. E. Shilling ◽  
R. A. Zaveri ◽  
J. D. Fast ◽  
L. Kleinman ◽  
M. L. Alexander ◽  
...  

Abstract. The CARES campaign was conducted during June, 2010 in the vicinity of Sacramento, California to study aerosol formation and aging in a region where anthropogenic and biogenic emissions regularly mix. Here, we describe measurements from an Aerodyne High Resolution Aerosol Mass Spectrometer (AMS), an Ionicon Proton Transfer Reaction Mass Spectrometer (PTR-MS), and trace gas detectors (CO, NO, NOx) deployed on the G-1 research aircraft to investigate ambient gas- and particle-phase chemical composition. AMS measurements showed that the particle phase is dominated by organic aerosol (OA) (85% on average) with smaller concentrations of sulfate (5%), nitrate (6%) and ammonium (3%) observed. PTR-MS data showed that isoprene dominated the biogenic volatile organic compound concentrations (BVOCs), with monoterpene concentrations generally below the detection limit. Using two different metrics, median OA concentrations and the slope of plots of OA vs. CO concentrations (i.e., ΔOA/ΔCO), we contrast organic aerosol evolution on flight days with different prevailing meteorological conditions to elucidate the role of anthropogenic and biogenic emissions on OA formation. Airmasses influenced predominantly by biogenic emissions had median OA concentrations of 2.2 μg m−3 and near zero ΔOA/ΔCO. Those influenced predominantly by anthropogenic emissions had median OA concentrations of 4.7 μg m−3 and ΔOA/ΔCO ratios of 35–44 μg m−3 ppmv. But, when biogenic and anthropogenic emissions mixed, OA levels were enhanced, with median OA concentrations of 11.4 μg m−3 and ΔOA/ΔCO ratios of 77–157 μg m−3 ppmv. Taken together, our observations show that production of OA was enhanced when anthropogenic emissions from Sacramento mixed with isoprene-rich air from the foothills. After considering several anthropogenic/biogenic interaction mechanisms, we conclude that NOx concentrations play a strong role in enhancing SOA formation from isoprene, though the chemical mechanism for the enhancement remains unclear. If these observations are found to be robust in other seasons and in areas outside of Sacramento, regional and global aerosol modules will need to incorporate more complex representations of NOx-dependent SOA mechanisms and yields into their algorithms. Ultimately, accurately predicting OA mass concentrations and their effect on radiation balance will require a mechanistically-based treatment of the interactions of biogenic and anthropogenic emissions.


2017 ◽  
Vol 17 (11) ◽  
pp. 7143-7155 ◽  
Author(s):  
Christos Kaltsonoudis ◽  
Evangelia Kostenidou ◽  
Evangelos Louvaris ◽  
Magda Psichoudaki ◽  
Epameinondas Tsiligiannis ◽  
...  

Abstract. Cooking emissions can be a significant source of fine particulate matter in urban areas. In this study the aerosol- and gas-phase emissions from meat charbroiling were characterized. Greek souvlakia with pork were cooked using a commercial charbroiler and a fraction of the emissions were introduced into a smog chamber where after a characterization phase they were exposed to UV illumination and oxidants. The particulate and gas phases were characterized by a high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) and a proton-transfer-reaction mass spectrometer (PTR-MS) correspondingly. More than 99 % of the aerosol emitted was composed of organic compounds, while black carbon (BC) contributed 0.3 % and the inorganic species less than 0.5 % of the total aerosol mass. The initial O  :  C ratio was approximately 0.09 and increased up to 0.30 after a few hours of chemical aging (exposures of 1010 molecules cm−3 s for OH and 100 ppb h for ozone). The initial and aged AMS spectra differed considerably (θ =  27°). Ambient measurements were also conducted during Fat Thursday in Patras, Greece, when traditionally meat is charbroiled everywhere in the city. Positive matrix factorization (PMF) revealed that cooking organic aerosol (COA) reached up to 85 % of the total OA from 10:00 to 12:00 LST that day. The ambient COA factor in two major Greek cities had a mass spectrum during spring and summer similar to the aged meat charbroiling emissions. In contrast, the ambient COA factor during winter resembled strongly the fresh laboratory meat charbroiling emissions.


2013 ◽  
Vol 13 (22) ◽  
pp. 11551-11571 ◽  
Author(s):  
A. M. Ortega ◽  
D. A. Day ◽  
M. J. Cubison ◽  
W. H. Brune ◽  
D. Bon ◽  
...  

Abstract. We report the physical and chemical effects of photochemically aging dilute biomass-burning smoke. A "potential aerosol mass" (PAM) flow reactor was used with analysis by a high-resolution aerosol mass spectrometer and a proton-transfer-reaction ion-trap mass spectrometer during the FLAME-3 campaign. Hydroxyl (OH) radical concentrations in the reactor reached up to ~1000 times average tropospheric levels, producing effective OH exposures equivalent to up to 5 days of aging in the atmosphere, and allowing for us to extend the investigation of smoke aging beyond the oxidation levels achieved in traditional smog chambers. Volatile organic compound (VOC) observations show aromatics and terpenes decrease with aging, while formic acid and other unidentified oxidation products increase. Unidentified gas-phase oxidation products, previously observed in atmospheric and laboratory measurements, were observed here, including evidence of multiple generations of photochemistry. Substantial new organic aerosol (OA) mass ("net SOA"; secondary OA) was observed from aging biomass-burning smoke, resulting in total OA average of 1.42 ± 0.36 times the initial primary OA (POA) after oxidation. This study confirms that the net-SOA-to-POA ratio of biomass-burning smoke is far lower on average than that observed for urban emissions. Although most fuels were very reproducible, significant differences were observed among the biomasses, with some fuels resulting in a doubling of the OA mass, while for others a very small increase or even a decrease was observed. Net SOA formation in the photochemical reactor increased with OH exposure (OHexp), typically peaking around three days of equivalent atmospheric photochemical age (OHexp~3.9 × 1011 molecules cm−3 s), then leveling off at higher exposures. The amount of additional OA mass added from aging is positively correlated with initial POA concentration, but not with the total VOC concentration or the concentration of known SOA precursors. The mass of SOA formed often exceeded the mass of the known VOC precursors, indicating the likely importance of primary semivolatile/intermediate volatility species, and possibly of unidentified VOCs as SOA precursors in biomass burning smoke. Chemical transformations continued even after mass concentration stabilized. Changes in the biomass-burning tracer f60 ranged from substantially decreasing to remaining constant with increased aging. With increased OHexp, oxidation was always detected (as indicated by f44 and O/C). POA O/C ranged from 0.15 to 0.5, while aged OA O/C reached up to 0.87. The rate of oxidation and maximum O/C achieved differs for each biomass, and appears to increase with the initial O/C of the POA.


2013 ◽  
Vol 13 (5) ◽  
pp. 12867-12911 ◽  
Author(s):  
R. Holzinger ◽  
A. H. Goldstein ◽  
P. L. Hayes ◽  
J. L. Jimenez ◽  
J. Timkovsky

Abstract. During the CalNex study (15 May to 16 June 2010) a large suite of instruments was operated at the Los Angeles area ground supersite to characterize the sources and atmospheric processing of atmospheric pollution. The thermal-desorption proton-transfer-reaction mass-spectrometer (TD-PTR-MS) was deployed to an urban area for the first time and detected 691 organic ions in aerosol samples, the mean total concentration of which was estimated as 3.3 μg m−3. Based on comparison to total organic aerosol (OA) measurements, we estimate that approximately 50% of the OA mass at this site was directly measured by the TD-PTR-MS. Based on correlations with aerosol mass spectrometer (AMS) OA components, the ions were grouped to represent hydrocarbon-like OA (HOA), local OA (LOA), semi-volatile oxygenated OA (SV-OOA), and low volatility oxygenated OA (LV-OOA). Mass spectra and thermograms of the ion groups are mostly consistent with the assumed sources and/or photochemical origin of the OA components. The mass spectra of ions representing the primary components HOA and LOA included the highest m/z, consistent with their higher resistance to thermal decomposition, and they were volatilized at lower temperatures. Photochemical ageing weakens C-C bond strengths (also resulting in chemical fragmentation), and produces species of lower volatility (through the addition of functional groups). Accordingly the mass spectra of ions representing the oxidized OA components (SV-OOA, and LV-OOA) lack the highest masses and they are volatilized at higher temperatures. Chemical parameters like mean carbon number (nC), mean carbon oxidation state (OSC), and the atomic ratios O/C and H/C of the ion groups are consistent with the expected sources and photochemical processing of the aerosol components. Our data suggest that chemical fragmentation gains importance over functionalization as photochemical age of OA increases. Surprisingly, the photochemical age of OA decreases during the daytime hours, demonstrating the importance of rapid production of new (photochemically young) SV-OOA during daytime. The PTR detects higher organic N concentrations than the AMS, the reasons for which are not well understood and cannot be explained by known artifacts related to PTR or the AMS. The median atomic N/C ratio (6.4%) of the ion group representing LV-OOA is a factor 2 higher than N/C of any other ion group. This suggests a multiphase chemical source involving ammonium ions is contributing to LV-OOA.


2013 ◽  
Vol 13 (3) ◽  
pp. 8537-8583 ◽  
Author(s):  
M. Crippa ◽  
F. Canonaco ◽  
J. G. Slowik ◽  
I. El Haddad ◽  
P. F. DeCarlo ◽  
...  

Abstract. Secondary organic aerosol (SOA), a predominant fraction of particulate organic mass (OA), remains poorly constrained. Its formation involves several unknown precursors, formation and evolution pathways and multiple natural and anthropogenic sources. Here a combined gas-particle phase source apportionment is applied to wintertime and summertime data collected in the megacity of Paris in order to investigate SOA origin during both seasons. This was possible by combining the information provided by an aerosol mass spectrometer (AMS) and a proton transfer reaction mass spectrometer (PTR-MS). A better constrained apportionment of primary OA (POA) sources is also achieved using this methodology, making use of gas-phase tracers. These tracers allowed distinguishing between biogenic and continental/anthropogenic sources of SOA. We found that continental SOA was dominant during both seasons (24–50% of total OA), while contributions from photochemistry-driven SOA (9% of total OA) and marine emissions (13% of total OA) were also observed during summertime. A semi-volatile nighttime component was also identified (up to 18% of total OA during wintertime). This approach was successfully applied here and implemented in a new source apportionment toolkit.


2013 ◽  
Vol 13 (5) ◽  
pp. 13799-13851 ◽  
Author(s):  
A. M. Ortega ◽  
D. A. Day ◽  
M. J. Cubison ◽  
W. H. Brune ◽  
D. Bon ◽  
...  

Abstract. We report the physical and chemical effects of photochemically aging dilute biomass-burning smoke. A potential aerosol mass "PAM" flow reactor was used with analysis by a high-resolution aerosol mass spectrometer and a proton-transfer reaction ion-trap mass spectrometer during the FLAME-3 campaign. Hydroxyl (OH) radical concentrations in the reactor reached up to ~ 1000 times average tropospheric levels, producing effective OH exposures equivalent to up to 5 days aging in the atmosphere. VOC observations show aromatics and terpenes decrease with aging, while formic acid and other unidentified oxidation products increase. Unidentified gas-phase oxidation products, previously observed in atmospheric and laboratory measurements, were observed here, including evidence of multiple generations of photochemistry. Substantial new organic aerosol (OA) mass ("net SOA"; secondary OA) was observed from aging biomass-burning smoke, resulting in an total OA average of 1.42 ± 0.36 times the initial primary OA (POA) after oxidation. This study confirms that the net SOA to POA ratio of biomass burning smoke is far lower on average than that observed for urban emissions. Although most fuels were very reproducible, significant differences were observed among the biomasses, with some fuels resulting in a doubling of the OA mass, while for others a very small increase or even a decrease was observed. Net SOA formation in the photochemical reactor increased with OH exposure (OHexp), typically peaking around three days of equivalent atmospheric photochemical age (OHexp ~ 3.9 × 1011 molecules cm−3 s−1), then leveling off at higher exposures. The amount of additional OA mass added from aging is positively correlated with initial POA concentration, but not with the total VOC concentration or the concentration of known SOA precursors. The mass of SOA formed often exceeds the mass of the known VOC precursors, indicating the likely importance of primary semivolatile/intermediate volatility species, and possibly of unidentified VOCs as SOA precursors in biomass burning smoke. Chemical transformations continue even after mass concentration stabilizes. Changes in the biomass-burning tracer f60 ranged from substantially decreasing to remaining constant with increased aging. With increased OHexp, oxidation was always detected (as indicated by f44 and O/C). POA O/C ranged 0.15–0.5, while aged OA O/C reached up to 0.87. The rate of oxidation and maximum O/C achieved differs for each biomass and appears to increase with the initial O/C of the POA.


2008 ◽  
Vol 8 (4) ◽  
pp. 15699-15737 ◽  
Author(s):  
A. P. Grieshop ◽  
J. M. Logue ◽  
N. M. Donahue ◽  
A. L. Robinson

Abstract. Experiments were conducted to investigate the effects of photo-oxidation on organic aerosol (OA) in wood smoke by exposing diluted emissions from soft- and hard-wood fires to UV light in a smog chamber. Particle- and gas-phase concentrations were monitored with a suite of instruments including a Proton Transfer Reaction Mass Spectrometer (PTR-MS), an Aerosol Mass Spectrometer (AMS) and a thermodenuder to measure aerosol volatility. The measurements highlight how in-plume processing can lead to considerable evolution of the mass and volatility of biomass burning OA. Photochemical oxidation produced substantial new OA, increasing concentrations by a factor of 1.5 to 2.8 after several hours of exposure to typical summertime hydroxyl radical (OH) concentrations. Less than 20% of this new OA could be explained using the measured decay of traditional secondary organic aerosol (SOA) precursors and a state-of-the-art SOA model. Aging also created less volatile OA; at 50°C between 50 and 80% of the fresh primary OA evaporated but only 20 to 40% of aged OA. Therefore, the data provide additional evidence that primary OA is semivolatile. They also raise questions about the current approach used to simulate OA in chemical transport models, which assume that primary OA are non-volatile but that SOA is semivolatile. Predictions of a volatility basis-set model that explicitly tracks the partitioning and aging of low-volatile organics are compared to the chamber data. This model demonstrates that the OA production observed in these experiments can be explained by oxidation of low volatility organic vapors. The basis-set model can also simulate observed changes in OA volatility and composition, predicting the OA production and the increased oxygenation and decreased volatility of the OA.


2013 ◽  
Vol 13 (19) ◽  
pp. 10125-10141 ◽  
Author(s):  
R. Holzinger ◽  
A. H. Goldstein ◽  
P. L. Hayes ◽  
J. L. Jimenez ◽  
J. Timkovsky

Abstract. During the CalNex study (15 May to 16 June 2010) a large suite of instruments was operated at the Los Angeles area ground supersite to characterize the sources and atmospheric processing of atmospheric pollution. The thermal-desorption proton-transfer-reaction mass-spectrometer (TD-PTR-MS) was deployed to an urban area for the first time and detected 691 organic ions in aerosol samples, the mean total concentration of which was estimated as 3.3 μg m−3. Based on comparison to total organic aerosol (OA) measurements, we estimate that approximately 50% of the OA mass at this site was directly measured by the TD-PTR-MS. Based on correlations with aerosol mass spectrometer (AMS) OA components, the ions were grouped to represent hydrocarbon-like OA (HOA), local OA (LOA), semi-volatile oxygenated OA (SV-OOA), and low volatility oxygenated OA (LV-OOA). Mass spectra and thermograms of the ion groups are mostly consistent with the assumed sources and/or photochemical origin of the OA components. The mass spectra of ions representing the primary components HOA and LOA included the highest m/z, consistent with their higher resistance to thermal decomposition, and they were volatilized at lower temperatures (~ 150 °C). Photochemical ageing weakens C-C bond strengths (also resulting in chemical fragmentation), and produces species of lower volatility (through the addition of functional groups). Accordingly the mass spectra of ions representing the oxidized OA components (SV-OOA, and LV-OOA) lack the highest masses and they are volatilized at higher temperatures (250–300 °C). Chemical parameters like mean carbon number (nC), mean carbon oxidation state (OSC), and the atomic ratios O / C and H / C of the ion groups are consistent with the expected sources and photochemical processing of the aerosol components. Our data suggest that chemical fragmentation gains importance over functionalization as photochemical age of OA increases. Surprisingly, the photochemical age of OA decreases during the daytime hours, demonstrating the importance of rapid production of new (photochemically young) SV-OOA during daytime. The PTR detects higher organic N concentrations than the AMS, the reasons for which are not well understood and cannot be explained by known artifacts related to PTR or the AMS. The median atomic N / C ratio (6.4%) of the ion group representing LV-OOA is a factor 2 higher than N / C of any other ion group. This suggests a multiphase chemical source involving ammonium ions is contributing to LV-OOA.


Sign in / Sign up

Export Citation Format

Share Document