scholarly journals The Berkeley Environmental Air-quality and CO<sub>2</sub> Network: field calibrations of sensor temperature dependence and assessment of network scale CO<sub>2</sub> accuracy

2021 ◽  
Vol 14 (8) ◽  
pp. 5487-5500
Author(s):  
Erin R. Delaria ◽  
Jinsol Kim ◽  
Helen L. Fitzmaurice ◽  
Catherine Newman ◽  
Paul J. Wooldridge ◽  
...  

Abstract. The majority of global anthropogenic CO2 emissions originate in cities. We have proposed that dense networks are a strategy for tracking changes to the processes contributing to urban CO2 emissions and suggested that a network with ∼ 2 km measurement spacing and ∼ 1 ppm node-to-node precision would be effective at constraining point, line, and area sources within cities. Here, we report on an assessment of the accuracy of the Berkeley Environmental Air-quality and CO2 Network (BEACO2N) CO2 measurements over several years of deployment. We describe a new procedure for improving network accuracy that accounts for and corrects the temperature-dependent zero offset of the Vaisala CarboCap GMP343 CO2 sensors used. With this correction we show that a total error of 1.6 ppm or less can be achieved for networks that have a calibrated reference location and 3.6 ppm for networks without a calibrated reference.

2021 ◽  
Author(s):  
Erin Rose Delaria ◽  
Jinsol Kim ◽  
Helen L. Fitzmaurice ◽  
Catherine Newman ◽  
Paul J. Wooldridge ◽  
...  

Abstract. The majority of global CO2 emissions originate in cities. We have proposed that dense networks are a strategy for tracking changes to the processes contributing to urban CO2 emissions and suggested that a network with ∼2 km measurement spacing and ∼1 ppm node-to-node precision would be effective at constraining point, line and area sources within cities. Here we report on an assessment of the accuracy of the Berkeley Environmental Air-quality and CO2 Network (BEACO2N) CO2 measurements over several years of deployment. We describe a new procedure for improving network accuracy that accounts for and corrects the temperature dependent zero offset of the Vaisala CarboCap GMP343 CO2 sensors used. With this correction we show that a total error of 1.6 ppm or less can be achieved for networks that have a calibrated reference location and 3.6 ppm for networks without a calibrated reference.


2020 ◽  
Author(s):  
Elena Spinei ◽  
Martin Tiefengraber ◽  
Moritz Müller ◽  
Manuel Gebetsberger ◽  
Alexander Cede ◽  
...  

Abstract. Analysis of formaldehyde measurements by the Pandora spectrometer systems between 2016 and 2019 suggested that there was a temperature dependent process inside Pandora head sensor that emitted formaldehyde. Some parts in the head sensor were manufactured from thermal plastic polyoxymethylene homopolimer (E.I. Du Pont de Nemour &amp; Co., USA: POM-H Delrin®) and were responsible for formaldehyde production. Laboratory analysis of the four Pandora head sensors showed that internal formaldehyde production had exponential temperature dependence with a damping coefficient of 0.0911 ± 0.0024 °C−1 and the exponential function amplitude ranging from 0.0041 DU to 0.049 DU. No apparent dependency on the head sensor age and heating/cooling rates was detected. The total amount of formaldehyde internally generated by the POM-H components and contributing to the direct sun measurements were estimated based on the head sensor temperature and solar zenith angle of the measurements. Measurements in winter, during cold days in general and at high solar zenith angles (> 75 °) were minimally impacted. Measurements during hot days and small solar zenith angles had up to 1 DU contribution from POM-H parts. Multi-axis differential slant column densities were minimally impacted (


1986 ◽  
Vol 41 (1-2) ◽  
pp. 171-174 ◽  
Author(s):  
M. Frank ◽  
F. Gubitz ◽  
W. Ittner ◽  
W. Kreische ◽  
A. Labahn ◽  
...  

The 19F quadrupole coupling constants in CF4, CHF3, CClF3 and CHClF2 are reported. The measurements were carried out temperature dependent using the time differential perturbed angular distribution method (TDPAD). The temperature dependence can be satisfactorily described in the framework of the Bayer-Kushida theory. A simple model is used to explain the appearance of H-F and Cl-F coupling constants in CHF3/CHClF2 and CClF3, respectively.


Author(s):  
Zhiyuan Wang ◽  
Xiaoyi Shi ◽  
Chunhua Pan ◽  
Sisi Wang

Exploring the relationship between environmental air quality (EAQ) and climatic conditions on a large scale can help better understand the main distribution characteristics and the mechanisms of EAQ in China, which is significant for the implementation of policies of joint prevention and control of regional air pollution. In this study, we used the concentrations of six conventional air pollutants, i.e., carbon monoxide (CO), sulfur dioxide (SO2), nitrogen dioxide (NO2), fine particulate matter (PM2.5), coarse particulate matter (PM10), and ozone (O3), derived from about 1300 monitoring sites in eastern China (EC) from January 2015 to December 2018. Exploiting the grading concentration limit (GB3095-2012) of various pollutants in China, we also calculated the monthly average air quality index (AQI) in EC. The results show that, generally, the EAQ has improved in all seasons in EC from 2015 to 2018. In particular, the concentrations of conventional air pollutants, such as CO, SO2, and NO2, have been decreasing year by year. However, the concentrations of particulate matter, such as PM2.5 and PM10, have changed little, and the O3 concentration increased from 2015 to 2018. Empirical mode decomposition (EOF) was used to analyze the major patterns of AQI in EC. The first mode (EOF1) was characterized by a uniform structure in AQI over EC. These phenomena are due to the precipitation variability associated with the East Asian summer monsoon (EASM), referred to as the “summer–winter” pattern. The second EOF mode (EOF2) showed that the AQI over EC is a north–south dipole pattern, which is bound by the Qinling Mountains and Huaihe River (about 35° N). The EOF2 is mainly caused by seasonal variations of the mixed concentration of PM2.5 and O3. Associated with EOF2, the Mongolia–Siberian High influences the AQI variation over northern EC by dominating the low-level winds (10 m and 850 hPa) in autumn and winter, and precipitation affects the AQI variation over southern EC in spring and summer.


Atmosphere ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 563
Author(s):  
Kelsey Anderson ◽  
Philip A. Moore ◽  
Jerry Martin ◽  
Amanda J. Ashworth

Gaseous emissions from poultry litter causes production problems for producers as well as the environment, by contributing to climate change and reducing air quality. Novel methods of reducing ammonia (NH3) and greenhouse gas (GHG) emissions in poultry facilities are needed. As such, our research evaluated GHG emissions over a 42 d period. Three separate flocks of 1000 broilers were used for this study. The first flock was used only to produce litter needed for the experiment. The second and third flocks were allocated to 20 pens in a randomized block design with four replicated of five treatments. The management practices studied included an unamended control; a conventional practice of incorporating aluminum sulfate (referred to as alum) at 98 kg/100 m2); a novel litter amendment made from alum mud, bauxite, and sulfuric acid (alum mud litter amendment, AMLA) applied at different rates (49 and 98 kg/100 m2) and methods (surface applied or incorporated). Nitrous oxide emissions were low for all treatments in flocks 2 and 3 (0.40 and 0.37 mg m2 hr−1, respectively). The formation of caked litter (due to excessive moisture) during day 35 and 42 caused high variability in CH4 and CO2 emissions. Alum mud litter amendment and alum did not significantly affect GHGs emissions from litter, regardless of the amendment rate or application method. In fact, litter amendments such as alum and AMLA typically lower GHG emissions from poultry facilities by reducing ventilation requirements to maintain air quality in cooler months due to lower NH3 levels, resulting in less propane use and concomitant reductions in CO2 emissions.


2001 ◽  
Vol 679 ◽  
Author(s):  
Stephen B. Cronin ◽  
Yu-Ming Lin ◽  
Oded Rabin ◽  
Marcie R. Black ◽  
Gene Dresselhaus ◽  
...  

ABSTRACTThe pressure filling of anodic alumina templates with molten bismuth has been used to synthesize single crystalline bismuth nanowires with diameters ranging from 7 to 200nm and lengths of 50μm. The nanowires are separated by dissolving the template, and electrodes are affixed to single Bi nanowires on Si substrates. A focused ion beam (FIB) technique is used first to sputter off the oxide from the nanowires with a Ga ion beam and then to deposit Pt without breaking vacuum. The resistivity of a 200nm diameter Bi nanowire is found to be only slightly greater than the bulk value, while preliminary measurements indicate that the resistivity of a 100nm diameter nanowire is significantly larger than bulk. The temperature dependence of the resistivity of a 100nm nanowire is modeled by considering the temperature dependent band parameters and the quantized band structure of the nanowires. This theoretical model is consistent with the experimental results.


2015 ◽  
Vol 178 (4) ◽  
pp. 592-600 ◽  
Author(s):  
Tiphaine Chevallier ◽  
Kaouther Hmaidi ◽  
Ernest Kouakoua ◽  
Martial Bernoux ◽  
Tahar Gallali ◽  
...  

Author(s):  
Carmen Leane NICOLESCU ◽  
Daniel DUNEA ◽  
Virgil MOISE ◽  
Gabriel GORGHIU

Environmental pollution of urban areas is one of the key factors that local agencies and authorities have to consider in the decision-making process. To succeed a sustainable management of the environment, there is necessary to use different kinds of instruments in order to evaluate and forecast the evolution of the environmental state. Understanding temporal and spatial distribution of air quality is essential in making decisions for regional management. In this paper a model for urban air quality forecasting using time series of monthly averages concentrations is presented. Sedimentable dusts (SD), total suspended particulates (TSP), nitrogen dioxide (NO2), and sulfur dioxide (SO2), imissions, recorded between 1995 and 2008 in the urban area of Târgovişte city are used as inputs in the model. The measured pollutant data from the local Environmental Agency database were statistically analyzed in time series including monthly patterns using the auto-regressive integrated moving average (ARIMA) method, linear trend, simple moving average of three terms and simple exponential smoothing. There was discussed the efficiency of using this method in forecasting the environmental air quality. In general, ARIMA technique scores well in predicting the analysed environmental air quality parameters.


Sign in / Sign up

Export Citation Format

Share Document