scholarly journals An experimental 2DVAR retrieval using AMSR2

2019 ◽  
Author(s):  
David Ian Duncan ◽  
Patrick Eriksson ◽  
Simon Pfreundschuh

Abstract. A two-dimensional variational retrieval (2DVAR) is presented for a passive microwave imager. The overlapping antenna patterns of all frequencies from the Advanced Microwave Scanning Radiometer-2 (AMSR2) are explicitly simulated to attempt retrieval of near surface wind speed and surface skin temperature at finer spatial scales than individual antenna beams. This is achieved, with the effective spatial resolution of retrieved parameters shown by analysis of 2DVAR averaging kernels. Sea surface temperature retrievals achieve about 30 km resolution, with wind speed retrievals at about 10 km resolution. It is argued that multi-dimensional optimal estimation permits greater use of total information content from microwave sensors than other methods, with no compromises on target resolution needed; instead, various targets are retrieved at the highest possible spatial resolution, driven by the channels' sensitivities. All AMSR2 channels can be simulated within near their published noise characteristics for observed clear-sky scenes, though calibration and emissivity model errors are key challenges. This experimental retrieval shows the feasibility of 2DVAR for cloud-free retrievals, and opens the possibility of standalone 3DVAR retrievals of water vapour and hydrometeor fields from microwave imagers in the future. The results have implications for future satellite missions and sensor design, as spatial oversampling can somewhat mitigate the need for larger antennas in the push for higher spatial resolution.

2019 ◽  
Vol 12 (12) ◽  
pp. 6341-6359
Author(s):  
David Ian Duncan ◽  
Patrick Eriksson ◽  
Simon Pfreundschuh

Abstract. A two-dimensional variational retrieval (2D-Var) is presented for a passive microwave imager. The overlapping antenna patterns of all frequencies from the Advanced Microwave Scanning Radiometer 2 (AMSR2) are explicitly simulated to attempt retrieval of near-surface wind speed and surface skin temperature at finer spatial scales than individual antenna beams. This is achieved, with the effective spatial resolution of retrieved parameters judged by analysis of 2D-Var averaging kernels. Sea surface temperature retrievals achieve about 30 km resolution, with wind speed retrievals at about 10 km resolution. It is argued that multi-dimensional optimal estimation permits greater use of total information content from microwave sensors than other methods, with no compromises on target resolution needed; instead, various targets are retrieved at the highest possible spatial resolution, driven by the channels' sensitivities. All AMSR2 channels can be simulated within near their published noise characteristics for observed clear-sky scenes, though calibration and emissivity model errors are key challenges. This experimental retrieval shows the feasibility of 2D-Var for cloud-free retrievals and opens the possibility of stand-alone 3D-Var retrievals of water vapour and hydrometeor fields from microwave imagers in the future. The results have implications for future satellite missions and sensor design, as spatial oversampling can somewhat mitigate the need for larger antennas in the push for higher spatial resolution.


2014 ◽  
Vol 599-601 ◽  
pp. 1605-1609 ◽  
Author(s):  
Ming Zeng ◽  
Zhan Xie Wu ◽  
Qing Hao Meng ◽  
Jing Hai Li ◽  
Shu Gen Ma

The wind is the main factor to influence the propagation of gas in the atmosphere. Therefore, the wind signal obtained by anemometer will provide us valuable clues for searching gas leakage sources. In this paper, the Recurrence Plot (RP) and Recurrence Quantification Analysis (RQA) are applied to analyze the influence of recurrence characteristics of the wind speed time series under the condition of the same place, the same time period and with the sampling frequency of 1hz, 2hz, 4.2hz, 5hz, 8.3hz, 12.5hz and 16.7hz respectively. Research results show that when the sampling frequency is higher than 5hz, the trends of recurrence nature of different groups are basically unchanged. However, when the sampling frequency is set below 5hz, the original trend of recurrence nature is destroyed, because the recurrence characteristic curves obtained using different sampling frequencies appear cross or overlapping phenomena. The above results indicate that the anemometer will not be able to fully capture the detailed information in wind field when its sampling frequency is lower than 5hz. The recurrence characteristics analysis of the wind speed signals provides an important basis for the optimal selection of anemometer.


2020 ◽  
Vol 12 (2) ◽  
pp. 155-164
Author(s):  
He Fang ◽  
William Perrie ◽  
Gaofeng Fan ◽  
Tao Xie ◽  
Jingsong Yang

Urban Climate ◽  
2020 ◽  
Vol 34 ◽  
pp. 100703
Author(s):  
Yonghong Liu ◽  
Yongming Xu ◽  
Fangmin Zhang ◽  
Wenjun Shu

Atmosphere ◽  
2020 ◽  
Vol 11 (7) ◽  
pp. 738 ◽  
Author(s):  
Wenqing Xu ◽  
Like Ning ◽  
Yong Luo

With the large-scale development of wind energy, wind power forecasting plays a key role in power dispatching in the electric power grid, as well as in the operation and maintenance of wind farms. The most important technology for wind power forecasting is forecasting wind speed. The current mainstream methods for wind speed forecasting involve the combination of mesoscale numerical meteorological models with a post-processing system. Our work uses the WRF model to obtain the numerical weather forecast and the gradient boosting decision tree (GBDT) algorithm to improve the near-surface wind speed post-processing results of the numerical weather model. We calculate the feature importance of GBDT in order to find out which feature most affects the post-processing wind speed results. The results show that, after using about 300 features at different height and pressure layers, the GBDT algorithm can output more accurate wind speed forecasts than the original WRF results and other post-processing models like decision tree regression (DTR) and multi-layer perceptron regression (MLPR). Using GBDT, the root mean square error (RMSE) of wind speed can be reduced from 2.7–3.5 m/s in the original WRF result by 1–1.5 m/s, which is better than DTR and MLPR. While the index of agreement (IA) can be improved by 0.10–0.20, correlation coefficient be improved by 0.10–0.18, Nash–Sutcliffe efficiency coefficient (NSE) be improved by −0.06–0.6. It also can be found that the feature which most affects the GBDT results is the near-surface wind speed. Other variables, such as forecast month, forecast time, and temperature, also affect the GBDT results.


2017 ◽  
Vol 12 (11) ◽  
pp. 114019 ◽  
Author(s):  
Verónica Torralba ◽  
Francisco J Doblas-Reyes ◽  
Nube Gonzalez-Reviriego

2010 ◽  
Vol 23 (2) ◽  
pp. 255-281 ◽  
Author(s):  
Larry W. O’Neill ◽  
Dudley B. Chelton ◽  
Steven K. Esbensen

Abstract The effects of surface wind speed and direction gradients on midlatitude surface vorticity and divergence fields associated with mesoscale sea surface temperature (SST) variability having spatial scales of 100–1000 km are investigated using vector wind observations from the SeaWinds scatterometer on the Quick Scatterometer (QuikSCAT) satellite and SST from the Advanced Microwave Scanning Radiometer for Earth Observing System (AMSR-E) Aqua satellite. The wind–SST coupling is analyzed over the period June 2002–August 2008, corresponding to the first 6+ years of the AMSR-E mission. Previous studies have shown that strong wind speed gradients develop in response to persistent mesoscale SST features associated with the Kuroshio Extension, Gulf Stream, South Atlantic, and Agulhas Return Current regions. Midlatitude SST fronts also significantly modify surface wind direction; the surface wind speed and direction responses to typical SST differences of about 2°–4°C are, on average, about 1–2 m s−1 and 4°–8°, respectively, over all four regions. Wind speed perturbations are positively correlated and very nearly collocated spatially with the SST perturbations. Wind direction perturbations, however, are displaced meridionally from the SST perturbations, with cyclonic flow poleward of warm SST and anticyclonic flow poleward of cool SST. Previous observational analyses have shown that small-scale perturbations in the surface vorticity and divergence fields are related linearly to the crosswind and downwind components of the SST gradient, respectively. When the vorticity and divergence fields are analyzed in curvilinear natural coordinates, the wind speed contributions to the SST-induced vorticity and divergence depend equally on the crosswind and downwind SST gradients, respectively. SST-induced wind direction gradients also significantly modify the vorticity and divergence fields, weakening the vorticity response to crosswind SST gradients while enhancing the divergence response to downwind SST gradients.


Sign in / Sign up

Export Citation Format

Share Document