scholarly journals Multifactor colorimetric analysis on pH-indicator papers: an optimized approach for direct determination of ambient aerosol pH

Author(s):  
Guo Li ◽  
Hang Su ◽  
Nan Ma ◽  
Guangjie Zheng ◽  
Uwe Kuhn ◽  
...  

Abstract. Direct measurement of the acidity (pH) of ambient aerosol particles/droplets has long been a challenge for atmospheric scientists. A novel and facile method was introduced recently by Craig et al. (2018), where the pH of size-resolved aerosol droplets was directly measured by two types of pH-indicator papers (pH ranges: 0–2.5 and 2.5–4.5) combined with RGB-based colorimetric analyses using a model of G − B (G minus B) versus pH2. Given the wide pH range of ambient aerosols, we optimize the RGB-based colorimetric analysis on pH papers with a wider detection range (pH ~ 0 to 6). Here, we propose a new model to establish the linear relationship between RGB values and pH: pHpredict = a × Rnormal + b × Gnormal + c × Bnormal. This model shows a wider applicability and higher accuracy than those in previous studies, and is thus recommended in future RGB-based colorimetric analyses on pH papers. Moreover, we identify one type of pH paper (Hydrion® Brilliant pH dip stiks, Lot Nr. 3110, Sigma-Aldrich) that is more applicable for ambient aerosols in terms of its wide pH detection range (0 to 6) and strong anti-interference capacity. The determined minimum sample mass (~ 180 μg) highlights its potential to predict aerosol pH with a high time resolution (e.g., ≤ 1 hour). We further show that the routinely adopted way of using pH color charts to predict aerosol pH may be biased by the mismatch between the standard colors on the color charts and the real colors of investigated samples. Thus, instead of using the producer-provided color chart, we suggest an in-situ calibration of pH papers with standard pH buffers.

2020 ◽  
Vol 13 (11) ◽  
pp. 6053-6065
Author(s):  
Guo Li ◽  
Hang Su ◽  
Nan Ma ◽  
Guangjie Zheng ◽  
Uwe Kuhn ◽  
...  

Abstract. Direct measurement of the acidity (pH) of ambient aerosol particles/droplets has long been a challenge for atmospheric scientists. A novel and facile method was introduced recently by Craig et al. (2018), where the pH of size-resolved aerosol droplets was directly measured by two types of pH-indicator papers (pH ranges: 0–2.5 and 2.5–4.5) combined with RGB-based colorimetric analyses using a model of G−B (G minus B) vs. pH2. Given the wide pH range of ambient aerosols, we optimize the RGB-based colorimetric analysis on pH papers with a wider detection range (pH ∼ 0 to 6). Here, we propose a new model to establish the linear relationship between RGB values and pH: pHpredict = a⋅Rnormal+b⋅Gnormal+c⋅Bnormal. This model shows a wider applicability and higher accuracy than those in previous studies and is thus recommended in future RGB-based colorimetric analyses on pH papers. Moreover, we identify one type of pH paper (Hydrion® Brilliant pH dip stiks, lot no. 3110, Sigma-Aldrich) that is more applicable for ambient aerosols in terms of its wide pH detection range (0 to 6) and strong anti-interference capacity. Custom-made impactors are used to collect lab-generated aerosols on this type of pH paper. Preliminary tests show that, with a collected particle size range of ∼ 0.4–2.2 µm, the pH paper method can be used to predict aerosol pH with an overall uncertainty ≤ 0.5 units. Based on laboratory tests, a relatively short sampling time (∼ 1 to 4 h) is speculated for pH prediction of ambient aerosols. More importantly, our design of the impactors minimizes potential influences of changed environmental conditions during pH paper photographing processes on the predicted aerosol pH. We further show that the routinely adopted way of using pH color charts to predict aerosol pH may be biased by the mismatch between the standard colors on the color charts and the real colors of investigated samples. Thus, instead of using the producer-provided color charts, we suggest an in situ calibration of pH papers with standard pH buffers.


2020 ◽  
Author(s):  
Guo Li ◽  
Hang Su ◽  
Nan Ma ◽  
Guangjie Zheng ◽  
Uwe Kuhn ◽  
...  

<p>Direct measurement of the acidity (pH) of ambient aerosol particles/droplets has long been a challenge for atmospheric scientists.  A novel and facile method was introduced recently by Craig et al. (2018), where the pH of size-resolved aerosol droplets was directly measured by two types of pH-indicator papers (pH ranges: 0 – 2.5 and 2.5 – 4.5) combined with RGB-based colorimetric analyses using a model of G-B (G minus B) versus pH<sup>2</sup>.  Given the wide pH range of ambient aerosols, we optimize the RGB-based colorimetric analysis on pH papers with a wider detection range (pH ~ 0 to 6).  Here, we propose a new model to establish the linear relationship between RGB values and pH: pH<sub>predict</sub> = a×R<sub>normal</sub> + b×G<sub>normal</sub> + c×B<sub>normal</sub>.  This model shows a wider applicability and higher accuracy than those in previous studies, and is thus recommended in future RGB-based colorimetric analyses on pH papers.  Moreover, we identify one type of pH paper (Hydrion<sup>®</sup> Brilliant pH dip stiks, Lot Nr. 3110, Sigma-Aldrich) that is more applicable for ambient aerosols in terms of its wide pH detection range (0 to 6) and strong anti-interference capacity.  The determined minimum sample mass (~ 180 µg) highlights its potential to predict aerosol pH with a high time resolution (e.g., ≤ 1 hour).  We further show that the routinely adopted way of using pH color charts to predict aerosol pH may be biased by the mismatch between the standard colors on the color charts and the real colors of investigated samples.  Thus, instead of using the producer-provided color chart, we suggest an in-situ calibration of pH papers with standard pH buffers.</p><p>Reference:</p><p>Craig, et al., Direct determination of aerosol pH: Size-resolved measurements of submicrometer and supermicrometer aqueous particles. Analytical Chemistry, 90 (19), 11232-11239, 2018.</p><p>Cheng, et al., Reactive nitrogen chemistry in aerosol water as a source of sulfate during haze events in China. Science Advances, 2 (12), e1601530, 10.1126/sciadv.1601530, 2016.</p><p>Zheng, et al., Exploring the severe winter haze in Beijing: The impact of synoptic weather, regional transport and heterogeneous reactions. Atmospheric Chemistry and Physics, 15, 2969-2983, 2015.</p><p>Li, et al., Multifactor colorimetric analysis on pH-indicator papers: an optimized approach for direct determination of ambient aerosol pH, Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2019-394, in review, 2019.</p>


2012 ◽  
Vol 9 (4) ◽  
pp. 2565-2574
Author(s):  
G. Karimipour ◽  
S. Gharaghani ◽  
R. Ahmadpour

Highly selective poly(vinyl chloride) (PVC) membrane of iodide ion selective electrode based on the application of bis(trans-cinnamaldehyde)-1,3-propanediimine)mercury(II)chloride [Hg(BPPPB)Cl2] as new carrier by coating the membrane ingredient on the surface of graphite electrodes has been reported. The effect of various parameters including membrane composition, pH and possible interfering anions on the response properties of the electrode were examined. At optimum conditions, the proposed sensor exhibited Nernstian responses toward iodide ion in a wide concentration range of 1×10-6to 0.1 M with slopes of 58.0±0.8 mV per decade of iodide concentration over a wide pH range of 3-11 with detection limit of detection of ~8×10-7M. The sensors have stable responses times of ≤ 5 s and give stable response after conditioning in 0.05 M KI for 24 h with its response is stable at least 2 months without any considerable divergence in its potential response characteristics. The electrodes were successfully applied for the direct determination of iodide ion in water sample and as indicator electrodes in precipitation titrations.


1991 ◽  
Vol 56 (12) ◽  
pp. 2791-2799 ◽  
Author(s):  
Juan A. Squella ◽  
Luis J. Nuñez-Vergara ◽  
Hernan Rodríguez ◽  
Amelia Márquez ◽  
Jose M. Rodríguez-Mellado ◽  
...  

Five N-p-phenyl substituted benzamidines were studied by DC and DP polarography in a wide pH range. Coulometric results show that the overall processes are four-electron reductions. Logarithmic analysis of the waves indicate that the process are irreversible. The influence of the pH on the polarographic parameters was also studied. A UV spectrophotometric study was performed in the pH range 2-13. In basic media some variations in the absorption bands were observed due to the dissociation of the amidine group. A determination of the pK values was made by deconvolution of the spectra. Correlations of both the electrochemical parameters and spectrophotometric pK values with the Hammett substituent constants were obtained.


Author(s):  
Manoj Kumar Panjwani ◽  
Qing Wang ◽  
Yueming Ma ◽  
Yuxuan Lin ◽  
Feng Xiao ◽  
...  

The development of a heterogeneous Fenton-like catalyst, possessing high degradation efficiency in a wide pH range, is crucial for wastewater treatment. The Fe-Mn-SiO2 catalyst was designed, and prepared by a...


Nanomaterials ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 662 ◽  
Author(s):  
Guangsheng Liu ◽  
Kunyapat Thummavichai ◽  
Xuefeng Lv ◽  
Wenting Chen ◽  
Tingjun Lin ◽  
...  

Molybdenum disulfide (MoS2) has been universally demonstrated to be an effective electrocatalytic catalyst for hydrogen evolution reaction (HER). However, the low conductivity, few active sites and poor stability of MoS2-based electrocatalysts hinder its hydrogen evolution performance in a wide pH range. The introduction of other metal phases and carbon materials can create rich interfaces and defects to enhance the activity and stability of the catalyst. Herein, a new defect-rich heterogeneous ternary nanocomposite consisted of MoS2, NiS and reduced graphene oxide (rGO) are synthesized using ultrathin αNi(OH)2 nanowires as the nickel source. The MoS2/rGO/NiS-5 of optimal formulation in 0.5 M H2SO4, 1.0 M KOH and 1.0 M PBS only requires 152, 169 and 209 mV of overpotential to achieve a current density of 10 mA cm−2 (denoted as η10), respectively. The excellent HER performance of the MoS2/rGO/NiS-5 electrocatalyst can be ascribed to the synergistic effect of abundant heterogeneous interfaces in MoS2/rGO/NiS, expanded interlayer spacings, and the addition of high conductivity graphene oxide. The method reported here can provide a new idea for catalyst with Ni-Mo heterojunction, pH-universal and inexpensive hydrogen evolution reaction electrocatalyst.


Sign in / Sign up

Export Citation Format

Share Document