scholarly journals A method for improved SCIAMACHY CO2 retrieval in the presence of optically thin clouds

2010 ◽  
Vol 3 (1) ◽  
pp. 209-232 ◽  
Author(s):  
M. Reuter ◽  
M. Buchwitz ◽  
O. Schneising ◽  
J. Heymann ◽  
H. Bovensmann ◽  
...  

Abstract. An optimal estimation based retrieval scheme for satellite based retrievals of XCO2 (the dry air column averaged mixing ratio of atmospheric CO2) is presented enabling accurate retrievals also in the presence of thin clouds. The proposed method is designed to analyze near-infrared nadir measurements of the SCIAMACHY instrument in the CO2 absorption band at 1580 nm and in the O2-A absorption band at around 760 nm. The algorithm accounts for scattering in an optically thin cirrus cloud layer and at aerosols of a default profile. The scattering information is mainly obtained from the O2-A band and a merged fit windows approach enables the transfer of information between the O2-A and the CO2 band. Via the optimal estimation technique, the algorithm is able to account for a priori information to further constrain the inversion. Test scenarios of simulated SCIAMACHY sun-normalized radiance measurements are analyzed in order to specify the quality of the proposed method. In contrast to existing algorithms for SCIAMACHY retrievals, the systematic errors due to cirrus clouds with optical thicknesses up to 1.0 are reduced to values below 4 ppm for most of the analyzed scenarios. This shows that the proposed method has the potential to reduce uncertainties of SCIAMACHY retrieved XCO2 making this data product potentially useful for surface flux inverse modeling.

2009 ◽  
Vol 2 (5) ◽  
pp. 2483-2538 ◽  
Author(s):  
M. Reuter ◽  
M. Buchwitz ◽  
O. Schneising ◽  
J. Heymann ◽  
H. Bovensmann ◽  
...  

Abstract. An optimal estimation based retrieval scheme for satellite based measurements of XCO2 (the column averaged mixing ratio of atmospheric CO2) is presented enabling accurate retrievals also in the presence of thin clouds. The proposed method is designed to analyze near-infrared nadir measurements of the SCIAMACHY instrument in the CO2 absorption band at 1580 nm and in the O2-A absorption band at around 760 nm. The algorithm accounts for scattering in an optically thin cirrus cloud layer and at aerosols of a default profile. The scattering information is mainly obtained from the O2-A band and a merged fit windows approach enables the transfer of information between the O2-A and the CO2 band. Via the optimal estimation technique, the algorithm is able to account for a priori information to further constrain the inversion. Test scenarios of simulated SCIAMACHY sun-normalized radiance measurements are analyzed in order to specify the quality of the proposed method. In contrast to existing algorithms, the systematic errors due to cirrus clouds with optical thicknesses up to 1.0 are reduced to values typically below 4 ppm. This shows that the proposed method has the potential to reduce uncertainties of SCIAMACHY retrieved XCO2 making this data product useful for surface flux inverse modeling.


2004 ◽  
Vol 22 (10) ◽  
pp. 3411-3420 ◽  
Author(s):  
V. F. Sofieva ◽  
J. Tamminen ◽  
H. Haario ◽  
E. Kyrölä ◽  
M. Lehtinen

Abstract. In this work we discuss inclusion of a priori information about the smoothness of atmospheric profiles in inversion algorithms. The smoothness requirement can be formulated in the form of Tikhonov-type regularization, where the smoothness of atmospheric profiles is considered as a constraint or in the form of Bayesian optimal estimation (maximum a posteriori method, MAP), where the smoothness of profiles can be included as a priori information. We develop further two recently proposed retrieval methods. One of them - Tikhonov-type regularization according to the target resolution - develops the classical Tikhonov regularization. The second method - maximum a posteriori method with smoothness a priori - effectively combines the ideas of the classical MAP method and Tikhonov-type regularization. We discuss a grid-independent formulation for the proposed inversion methods, thus isolating the choice of calculation grid from the question of how strong the smoothing should be. The discussed approaches are applied to the problem of ozone profile retrieval from stellar occultation measurements by the GOMOS instrument on board the Envisat satellite. Realistic simulations for the typical measurement conditions with smoothness a priori information created from 10-years analysis of ozone sounding at Sodankylä and analysis of the total retrieval error illustrate the advantages of the proposed methods. The proposed methods are equally applicable to other profile retrieval problems from remote sensing measurements.


2007 ◽  
Vol 7 (13) ◽  
pp. 3519-3536 ◽  
Author(s):  
A. Gobiet ◽  
G. Kirchengast ◽  
G. L. Manney ◽  
M. Borsche ◽  
C. Retscher ◽  
...  

Abstract. This study describes and evaluates a Global Navigation Satellite System (GNSS) radio occultation (RO) retrieval scheme particularly aimed at delivering bias-free atmospheric parameters for climate monitoring and research. The focus of the retrieval is on the sensible use of a priori information for careful high-altitude initialisation in order to maximise the usable altitude range. The RO retrieval scheme has been meanwhile applied to more than five years of data (September 2001 to present) from the German CHAllenging Minisatellite Payload for geoscientific research (CHAMP) satellite. In this study it was validated against various correlative datasets including the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) and the Global Ozone Monitoring for Occultation of Stars (GOMOS) sensors on Envisat, five different atmospheric analyses, and the operational CHAMP retrieval product from GeoForschungsZentrum (GFZ) Potsdam. In the global mean within 10 to 30 km altitude we find that the present validation observationally constrains the potential RO temperature bias to be <0.2 K. Latitudinally resolved analyses show biases to be observationally constrained to <0.2–0.5 K up to 35 km in most cases, and up to 30 km in any case, even if severely biased (about 10 K or more) a priori information is used in the high altitude initialisation of the retrieval. No evidence is found for the 10–35 km altitude range of residual RO bias sources other than those potentially propagated downward from initialisation, indicating that the widely quoted RO promise of "unbiasedness and long-term stability due to intrinsic self-calibration" can indeed be realised given care in the data processing to strictly limit structural uncertainty. The results thus reinforce that adequate high-altitude initialisation is crucial for accurate stratospheric RO retrievals. The common method of initialising, at some altitude in the upper stratosphere, the hydrostatic integral with an upper boundary temperature or pressure value derived from meteorological analyses is prone to introduce biases from the upper boundary down to below 25 km. Also above 30 to 35 km, GNSS RO delivers a considerable amount of observed information up to around 40 km, which is particularly interesting for numerical weather prediction (NWP) systems, where direct assimilation of non-initialised observed RO bending angles (free of a priori) is thus the method of choice. The results underline the value of RO for climate applications.


2019 ◽  
Vol 12 (7) ◽  
pp. 3943-3961 ◽  
Author(s):  
Ali Jalali ◽  
Shannon Hicks-Jalali ◽  
Robert J. Sica ◽  
Alexander Haefele ◽  
Thomas von Clarmann

Abstract. Lidar retrievals of atmospheric temperature and water vapor mixing ratio profiles using the optimal estimation method (OEM) typically use a retrieval grid with a number of points larger than the number of pieces of independent information obtainable from the measurements. Consequently, retrieved geophysical quantities contain some information from their respective a priori values or profiles, which can affect the results in the higher altitudes of the temperature and water vapor profiles due to decreasing signal-to-noise ratios. The extent of this influence can be estimated using the retrieval's averaging kernels. The removal of formal a priori information from the retrieved profiles in the regions of prevailing a priori effects is desirable, particularly when these greatest heights are of interest for scientific studies. We demonstrate here that removal of a priori information from OEM retrievals is possible by repeating the retrieval on a coarser grid where the retrieval is stable even without the use of formal prior information. The averaging kernels of the fine-grid OEM retrieval are used to optimize the coarse retrieval grid. We demonstrate the adequacy of this method for the case of a large power-aperture Rayleigh scatter lidar nighttime temperature retrieval and for a Raman scatter lidar water vapor mixing ratio retrieval during both day and night.


2016 ◽  
Vol 9 (3) ◽  
pp. 909-928 ◽  
Author(s):  
Daniel Fisher ◽  
Caroline A. Poulsen ◽  
Gareth E. Thomas ◽  
Jan-Peter Muller

Abstract. In this paper we evaluate the impact on the cloud parameter retrievals of the ORAC (Optimal Retrieval of Aerosol and Cloud) algorithm following the inclusion of stereo-derived cloud top heights as a priori information. This is performed in a mathematically rigorous way using the ORAC optimal estimation retrieval framework, which includes the facility to use such independent a priori information. Key to the use of a priori information is a characterisation of their associated uncertainty. This paper demonstrates the improvements that are possible using this approach and also considers their impact on the microphysical cloud parameters retrieved. The Along-Track Scanning Radiometer (AATSR) instrument has two views and three thermal channels, so it is well placed to demonstrate the synergy of the two techniques. The stereo retrieval is able to improve the accuracy of the retrieved cloud top height when compared to collocated Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO), particularly in the presence of boundary layer inversions and high clouds. The impact of the stereo a priori information on the microphysical cloud properties of cloud optical thickness (COT) and effective radius (RE) was evaluated and generally found to be very small for single-layer clouds conditions over open water (mean RE differences of 2.2 (±5.9) microns and mean COD differences of 0.5 (±1.8) for single-layer ice clouds over open water at elevations of above 9 km, which are most strongly affected by the inclusion of the a priori).


2009 ◽  
Vol 2 (2) ◽  
pp. 679-701 ◽  
Author(s):  
G. E. Thomas ◽  
C. A. Poulsen ◽  
A. M. Sayer ◽  
S. H. Marsh ◽  
S. M. Dean ◽  
...  

Abstract. The aerosol component of the Oxford-Rutherford Aerosol and Cloud (ORAC) combined cloud and aerosol retrieval scheme is described and the theoretical performance of the algorithm is analysed. ORAC is an optimal estimation retrieval scheme for deriving cloud and aerosol properties from measurements made by imaging satellite radiometers and, when applied to cloud free radiances, provides estimates of aerosol optical depth at a wavelength of 550 nm, aerosol effective radius and surface reflectance at 550 nm. The aerosol retrieval component of ORAC has several incarnations – this paper addresses the version which operates in conjunction with the cloud retrieval component of ORAC (described by Watts et al., 1998), as applied in producing the Global Retrieval of ATSR Cloud Parameters and Evaluation (GRAPE) data-set. The algorithm is described in detail and its performance examined. This includes a discussion of errors resulting from the formulation of the forward model, sensitivity of the retrieval to the measurements and a priori constraints, and errors resulting from assumptions made about the atmospheric/surface state.


2015 ◽  
Vol 8 (5) ◽  
pp. 5283-5327
Author(s):  
D. Fisher ◽  
C. A. Poulsen ◽  
G. E. Thomas ◽  
J.-P. Muller

Abstract. In this paper we evaluate the retrievals of cloud top height when stereo derived heights are combined with the radiometric cloud top heights retrieved from the ORAC (Optimal Retrieval of Aerosol and Cloud) algorithm. This is performed in a mathematically rigorous way using the ORAC optimal estimation retrieval framework, which includes the facility to use independent a priori information. Key to the use of a priori information is a characterisation of their associated uncertainty. This paper demonstrates the improvements that are possible using this approach and also considers their impact on the microphysical cloud parameters retrieved. The AATSR instrument has two views and three thermal channels so is well placed to demonstrate the synergy of the two techniques. The stereo retrieval is able to improve the accuracy of the retrieved cloud top height when compared to collocated Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO), particularly in the presence of boundary layer inversions and high clouds. The impact on the microphysical properties of the cloud such as optical depth and effective radius was evaluated and found to be very small with the biggest differences occurring over bright land surfaces and for high clouds. Overall the cost of the retrievals increased indicating a poorer radiative fit of radiances to the cloud model, which currently uses a single layer cloud model. Best results and improved fit to the radiances may be obtained in the future if a multi-layer model is used.


2018 ◽  
Vol 226 ◽  
pp. 04045 ◽  
Author(s):  
Dmitriy A. Bezuglov ◽  
Viacheslav V. Voronin ◽  
Vladimir A. Krutov

Analytical equations of a new spline approximation method for filtering impulse noise in images are obtained. The proposed method differs from the known ones: when filtering images, one-dimensional sequential spline functions are used for direct and inverse transformations, and the processing is performed in rows and columns. In this work, experimental studies based on computer simulation using special test images on the background of impulse noise were conducted. Experimental studies have shown the operability and high efficiency of the developed method, which allow to improve the quality of image filtering by up to 10 dB. In this case, the properties of spline functions make it possible to abandon the use of various masks, that is, to abandon inefficient linear methods of image filtering. The method can be used to create digital image processing systems in the industry, to create autonomous robots, under observation conditions that complicate the registration process, and in the absence of a priori information about the form of background noise.


2008 ◽  
Vol 8 (2) ◽  
pp. 4561-4602 ◽  
Author(s):  
L. Hoffmann ◽  
M. Kaufmann ◽  
R. Spang ◽  
R. Müller ◽  
J. J. Remedios ◽  
...  

Abstract. From July 2002 to March 2004 the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) aboard the European Space Agency's Environmental Satellite (Envisat) measured nearly continuously mid infrared limb radiance spectra. These measurements are utilised to retrieve the global distribution of the chlorofluorocarbon CFC-11 by applying a new fast forward model for Envisat MIPAS and an accompanying optimal estimation retrieval processor. A detailed analysis shows that the total retrieval errors of the individual CFC-11 volume mixing ratios are typically below 10% and that the systematic components are dominating. Contribution of a priori information to the retrieval results are less than 5 to 10%. The vertical resolution of the observations is about 3 to 4 km. The data are successfully validated by comparison with several other space experiments, an air-borne in-situ instrument, measurements from ground-based networks, and independent Envisat MIPAS analyses. The retrieval results from 425 000 Envisat MIPAS limb scans are compiled to provide a new climatological data set of CFC-11. The climatology shows significantly lower CFC-11 abundances in the lower stratosphere compared with the Reference Atmospheres for MIPAS (RAMstan V3.1) climatology. Depending on the atmospheric conditions the differences between the climatologies are up to 30 to 110 ppt (45 to 150%) at 19 to 27 km altitude. Additionally, time series of CFC-11 mean abundance and variability for five latitudinal bands are presented. The observed CFC-11 distributions can be explained by the residual mean circulation and large-scale eddy-transports in the upper troposphere and lower stratosphere. The new CFC-11 data set is well suited for further scientific studies.


Sign in / Sign up

Export Citation Format

Share Document