scholarly journals Retrieval of volcanic SO<sub>2</sub> from HIRS/2 using optimal estimation

2017 ◽  
Vol 10 (7) ◽  
pp. 2687-2702 ◽  
Author(s):  
Georgina M. Miles ◽  
Richard Siddans ◽  
Roy G. Grainger ◽  
Alfred J. Prata ◽  
Bradford Fisher ◽  
...  

Abstract. We present an optimal-estimation (OE) retrieval scheme for stratospheric sulfur dioxide from the High-Resolution Infrared Radiation Sounder 2 (HIRS/2) instruments on the NOAA and MetOp platforms, an infrared radiometer that has been operational since 1979. This algorithm is an improvement upon a previous method based on channel brightness temperature differences, which demonstrated the potential for monitoring volcanic SO2 using HIRS/2. The Prata method is fast but of limited accuracy. This algorithm uses an optimal-estimation retrieval approach yielding increased accuracy for only moderate computational cost. This is principally achieved by fitting the column water vapour and accounting for its interference in the retrieval of SO2. A cloud and aerosol model is used to evaluate the sensitivity of the scheme to the presence of ash and water/ice cloud. This identifies that cloud or ash above 6 km limits the accuracy of the water vapour fit, increasing the error in the SO2 estimate. Cloud top height is also retrieved. The scheme is applied to a case study event, the 1991 eruption of Cerro Hudson in Chile. The total erupted mass of SO2 is estimated to be 2300 kT ± 600 kT. This confirms it as one of the largest events since the 1991 eruption of Pinatubo, and of comparable scale to the Northern Hemisphere eruption of Kasatochi in 2008. This retrieval method yields a minimum mass per unit area detection limit of 3 DU, which is slightly less than that for the Total Ozone Mapping Spectrometer (TOMS), the only other instrument capable of monitoring SO2 from 1979 to 1996. We show an initial comparison to TOMS for part of this eruption, with broadly consistent results. Operating in the infrared (IR), HIRS has the advantage of being able to measure both during the day and at night, and there have frequently been multiple HIRS instruments operated simultaneously for better than daily sampling. If applied to all data from the series of past and future HIRS instruments, this method presents the opportunity to produce a comprehensive and consistent volcanic SO2 time series spanning over 40 years.

2017 ◽  
Author(s):  
Georgina M. Miles ◽  
Richard Siddans ◽  
Roy G. Grainger ◽  
Alfred J. Prata ◽  
Bradford Fisher ◽  
...  

Abstract. We present an optimal estimation (OE) retrieval scheme for stratospheric sulphur dioxide from the High Resolution Infrared Radiation Sounder 2 (HIRS/2) instruments on the NOAA and MetOp platforms, an infrared radiometer that has been operational since 1979. This algorithm is an improvement upon a previous method based on channel brightness temperature differences developed by Prata et al. (2003), which demonstrated the potential for monitoring volcanic SO2 using HIRS/2. The Prata method is fast but of limited accuracy. This algorithm uses an optimal estimation retrieval approach yielding increased accuracy for only moderate computational cost. This is principally achieved by fitting the column water vapour and accounting for its interference in the retrieval of SO2. A cloud and aerosol model is used to evaluate the sensitivity of the scheme to the presence of ash and water/ice cloud. This identifies that cloud or ash above 6 km limits the accuracy of the water vapour fit, increasing the error in the SO2 estimate. Cloud top height is also retrieved. The scheme is applied to a case study event, the 1991 eruption of Cerro Hudson in Chile. The total erupted mass of SO2 is estimated to be 2300 kT ± 600 kT. This confirms it as one of the largest events since the 1991 eruption of Pinatubo, and of comparable scale to the Northern Hemisphere eruption of Kasatochi in 2008. This retrieval method yields a minimum mass per unit area detection limit of 3 DU, which is slightly less than that for the Total Ozone Mapping Spectrometer (TOMS), the only other instrument capable of monitoring SO2 from 1979–1996. We show an initial comparison to TOMS for part of this eruption, with broadly consistent results. Operating in the infrared (IR), HIRS has the advantage of being able to measure both during the day and at night, and there have frequently been multiple HIRS instruments operated simultaneously for better than daily sampling. If applied to all data from the series of past and future HIRS instruments, this method presents the opportunity to produce a comprehensive and consistent volcanic SO2 timeseries spanning over 40 years.


2021 ◽  
Author(s):  
Alex Innanen ◽  
Brittney Cooper ◽  
Charissa Campbell ◽  
Scott Guzewich ◽  
Jacob Kloos ◽  
...  

&lt;p&gt;1. INTRODUCTION&lt;/p&gt;&lt;p&gt;The Mars Science Laboratory (MSL) is located in Gale Crater (4.5&amp;#176;S, 137.4&amp;#176;E), and has been performing cloud observations for the entirety of its mission, since its landing in 2012 [eg. 1,2,3]. One such observation is the Phase Function Sky Survey (PFSS), developed by Cooper et al [3] and instituted in Mars Year (MY) 34 to determine the scattering phase function of Martian water-ice clouds. The clouds of interest form during the Aphelion Cloud Belt (ACB) season (L&lt;sub&gt;s&lt;/sub&gt;=50&amp;#176;-150&amp;#176;), a period of time during which there is an increase in the formation of water-ice clouds around the Martian equator [4]. The PFSS observation was also performed during the MY 35 ACB season and the current MY 36 ACB season.&lt;/p&gt;&lt;p&gt;Following the MY 34 ACB season, Mars experienced a global dust storm which lasted from L&lt;sub&gt;s&lt;/sub&gt;~188&amp;#176; to L&lt;sub&gt;s&lt;/sub&gt;~250&amp;#176; of that Mars year [5]. Global dust storms are planet-encircling storms which occur every few Mars years and can significantly impact the atmosphere leading to increased dust aerosol sizes [6], an increase in middle atmosphere water vapour [7], and the formation of unseasonal water-ice clouds [8]. While the decrease in visibility during the global dust storm itself made cloud observation difficult, comparing the scattering phase function prior to and following the global dust storm can help to understand the long-term impacts of global dust storms on water-ice clouds.&lt;/p&gt;&lt;p&gt;2. METHODS&lt;/p&gt;&lt;p&gt;The PFSS consists of 9 cloud movies of three frames each, taken using MSL&amp;#8217;s navigation cameras, at a variety of pointings in order to observe a large range of scattering angles. The goal of the PFSS is to characterise the scattering properties of water-ice clouds and to determine ice crystal geometry.&amp;#160; In each movie, clouds are identified using mean frame subtraction, and the phase function is computed using the formula derived by Cooper et al [3]. An average phase function can then be computed for the entirety of the ACB season.&lt;/p&gt;&lt;p&gt;&lt;img src=&quot;https://contentmanager.copernicus.org/fileStorageProxy.php?f=gnp.eda718c85da062913791261/sdaolpUECMynit/1202CSPE&amp;app=m&amp;a=0&amp;c=67584351a5c2fde95856e0760f04bbf3&amp;ct=x&amp;pn=gnp.elif&amp;d=1&quot; alt=&quot;Figure 1 &amp;#8211; Temporal Distribution of Phase Function Sky Survey Observations for Mars Years 34 and 35&quot; width=&quot;800&quot; height=&quot;681&quot;&gt;&lt;/p&gt;&lt;p&gt;Figure 1 shows the temporal distributions of PFSS observations taken during MYs 34 and 35. We aim to capture both morning and afternoon observations in order to study any diurnal variability in water-ice clouds.&lt;/p&gt;&lt;p&gt;3. RESULTS AND DISCUSSION&lt;/p&gt;&lt;p&gt;There were a total of 26 PFSS observations taken in MY 35 between L&lt;sub&gt;s&lt;/sub&gt;~50&amp;#176;-160&amp;#176;, evenly distributed between AM and PM observations. Typically, times further from local noon (i.e. earlier in the morning or later in the afternoon) show stronger cloud features, and run less risk of being obscured by the presence of the sun. In all movies in which clouds are detected, a phase function can be calculated, and an average phase function determined for the whole ACB season. &amp;#160;&lt;/p&gt;&lt;p&gt;Future work will look at the water-ice cloud scattering properties for the MY 36 ACB season, allowing us to get more information about the interannual variability of the ACB and to further constrain the ice crystal habit. The PFSS observations will not only assist in our understanding of the long-term atmospheric impacts of global dust storms but also add to a more complete image of time-varying water-ice cloud properties.&lt;/p&gt;


2021 ◽  
Author(s):  
Michael P. Cartwright ◽  
Jeremy J. Harrison ◽  
David P. Moore

&lt;p&gt;Carbonyl sulfide (OCS) is the most abundant sulfur containing gas in the atmosphere and is an important source of stratospheric aerosol. Furthermore, it has been shown that OCS can be used as a proxy for photosynthesis, which is a powerful tool in quantifying global gross primary production. While considerable improvements have been made in our understanding of the location and magnitude of OCS fluxes over the past few decades, recent studies highlight the need for a new satellite dataset to help reduce the uncertainties in current estimations. The Infrared Atmospheric Sounding Interferometer (IASI) instruments on-board the MetOp satellites offer over 14 years of nadir viewing radiance measurements with excellent spatial coverage. Given that there are currently three IASI instruments in operation, there is the potential for a significantly larger OCS dataset than is currently available elsewhere. Retrievals of OCS from these IASI radiances have been made using an adapted version of the University of Leicester IASI Retrieval Scheme (ULIRS). OCS total column amounts are calculated from profiles retrieved on a 31-layer equidistant pressure grid, using an optimal estimation approach for microwindows in the range 2000 &amp;#8211; 2100 cm&lt;sup&gt;-1&lt;/sup&gt; wavenumbers. Sensitivity of the measurements peak in the mid-troposphere, between 5 &amp;#8211; 10 km.&lt;/p&gt;&lt;p&gt;The outlook of this work is to produce a long-term OCS satellite observational data set that provides fresh insight to the spatial distribution and trend of atmospheric OCS. Here, we present subsets of data in the form of case studies for different geographic regions and time periods.&lt;/p&gt;


Atmosphere ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 1256
Author(s):  
Jan El Kassar ◽  
Cintia Carbajal Henken ◽  
Rene Preusker ◽  
Jürgen Fischer

A new algorithm for the retrieval of day-time total column water vapour (TCWV) from measurements of a MSG-SEVIRI (Meteosat Second Generation Spinning Enhanced Visible and Infrared Imager) instrument is presented. The retrieval is based on a forward operator, at the core of which lies Radiative Transfer for TIROS Operational Vertical Sounder (RTTOV). This forward model relates TCWV and surface temperature to brightness temperatures in the split window at 11 and 12µm with the use of a first guess for temperature and humidity profiles from the ERA5 reanalysis. The forward model is then embedded in a full Optimal Estimation (OE) method, which yields pixel by pixel uncertainty estimates and performance indicators. The algorithm is applicable to any instrument which features the split window configuration, given a first guess for atmospheric conditions (i.e., from NWP) and an estimate of surface emissivity at 11 µm. The algorithm was developed within the framework of RealPEP (Near-Realtime Quantitative Precipitation Estimation and Prediction) in which the advancement of the estimation and nowcasting of extreme precipitation and flooding in Germany are studied. Thus, processing and validation has been limited to the German domain. Three independent ground-based TCWV observation data sets were used as reference, i.e., AERONET (Aerosol Robotic Network), GNSS Germany (Global Navigation Satellite System) and measurements from two MWR (Microwave Radiometer) sites. The validation concludes with good agreement, with absolute biases between 0.11 and 2.85 kg/m2, root mean square deviations (rmsds) between 1.63 and 3.24 kg/m2 and Pearson correlation coefficients ranging from 0.96 to 0.98. The retrievals uncertainty estimates were evaluated against AERONET. The comparison suggests that, in sum, uncertainties are estimated well, while still some error sources seem to be over- and underestimated. In limited case studies it could be shown that SEVIRI TCWV is capable to both display large scale variabilities in water vapour fields and reproduce the daily course of water vapour exposed by ground-based observations.


2015 ◽  
Vol 15 (15) ◽  
pp. 21883-21906
Author(s):  
A. Laaksonen ◽  
J. Malila

Abstract. Heterogeneous nucleation of water vapour on insoluble nuclei is a phenomenon that can induce atmospheric water and ice cloud formation. However, modelling of the phenomenon is hampered by the fact that the predictive capability of the classical heterogeneous nucleation theory is rather poor. A reliable theoretical description of the influence of different types of water-insoluble nuclei in triggering the water condensation or ice deposition would help to decrease uncertainty in large scale model simulations. In this paper we extend a recently formulated adsorption theory of heterogeneous nucleation to be applicable to highly curved surfaces, and test the theory against laboratory data for water vapour nucleation on silica, titanium dioxide and silver oxide nanoparticles. We show that unlike the classical heterogeneous nucleation theory, the new theory is able to quantitatively predict the experimental results.


2011 ◽  
Vol 4 (2) ◽  
pp. 269-288 ◽  
Author(s):  
S. M. Illingworth ◽  
J. J. Remedios ◽  
H. Boesch ◽  
D. P. Moore ◽  
H. Sembhi ◽  
...  

Abstract. This paper presents a new retrieval scheme for tropospheric carbon monoxide (CO), using measured radiances from the Infrared Atmospheric Sounding Interferometer (IASI) onboard the MetOp-A satellite. The University of Leicester IASI Retrieval Scheme (ULIRS) is an optimal estimation retrieval scheme, which utilises equidistant pressure levels and a floating pressure grid based on topography. It makes use of explicit digital elevation and emissivity information, and incorporates a correction for solar surface reflection in the daytime with a high resolution solar spectrum. The retrieval scheme has been assessed through a formal error analysis, via the simulation of surface effects and by an application to real IASI data over a region in Southern Africa. The ULIRS enables the retrieval of between 1 and 2 pieces of information about the tropospheric CO vertical profiles, with peaks in the sensitivity at approximately 5 and 12 km. Typical errors for the African region relating to the profiles are found to be ~20% at 5 and 12 km, and on the total columns to range from 18 to 34%. Finally the performance of the ULIRS is shown for a range of simulated geophysical conditions.


2010 ◽  
Vol 3 (1) ◽  
pp. 209-232 ◽  
Author(s):  
M. Reuter ◽  
M. Buchwitz ◽  
O. Schneising ◽  
J. Heymann ◽  
H. Bovensmann ◽  
...  

Abstract. An optimal estimation based retrieval scheme for satellite based retrievals of XCO2 (the dry air column averaged mixing ratio of atmospheric CO2) is presented enabling accurate retrievals also in the presence of thin clouds. The proposed method is designed to analyze near-infrared nadir measurements of the SCIAMACHY instrument in the CO2 absorption band at 1580 nm and in the O2-A absorption band at around 760 nm. The algorithm accounts for scattering in an optically thin cirrus cloud layer and at aerosols of a default profile. The scattering information is mainly obtained from the O2-A band and a merged fit windows approach enables the transfer of information between the O2-A and the CO2 band. Via the optimal estimation technique, the algorithm is able to account for a priori information to further constrain the inversion. Test scenarios of simulated SCIAMACHY sun-normalized radiance measurements are analyzed in order to specify the quality of the proposed method. In contrast to existing algorithms for SCIAMACHY retrievals, the systematic errors due to cirrus clouds with optical thicknesses up to 1.0 are reduced to values below 4 ppm for most of the analyzed scenarios. This shows that the proposed method has the potential to reduce uncertainties of SCIAMACHY retrieved XCO2 making this data product potentially useful for surface flux inverse modeling.


2009 ◽  
Vol 2 (2) ◽  
pp. 679-701 ◽  
Author(s):  
G. E. Thomas ◽  
C. A. Poulsen ◽  
A. M. Sayer ◽  
S. H. Marsh ◽  
S. M. Dean ◽  
...  

Abstract. The aerosol component of the Oxford-Rutherford Aerosol and Cloud (ORAC) combined cloud and aerosol retrieval scheme is described and the theoretical performance of the algorithm is analysed. ORAC is an optimal estimation retrieval scheme for deriving cloud and aerosol properties from measurements made by imaging satellite radiometers and, when applied to cloud free radiances, provides estimates of aerosol optical depth at a wavelength of 550 nm, aerosol effective radius and surface reflectance at 550 nm. The aerosol retrieval component of ORAC has several incarnations – this paper addresses the version which operates in conjunction with the cloud retrieval component of ORAC (described by Watts et al., 1998), as applied in producing the Global Retrieval of ATSR Cloud Parameters and Evaluation (GRAPE) data-set. The algorithm is described in detail and its performance examined. This includes a discussion of errors resulting from the formulation of the forward model, sensitivity of the retrieval to the measurements and a priori constraints, and errors resulting from assumptions made about the atmospheric/surface state.


2020 ◽  
Author(s):  
Megan Brown ◽  
Manish Patel ◽  
Stephen Lewis ◽  
Amel Bennaceur

&lt;p&gt;This project maps ozone and ice-water clouds detected in the martian atmosphere to assess the atmospheric chemistry between ozone, water-ice and hydroxyl radicals. Hydroxyl photochemistry may be indicated by a non-negative or fluctuating correlation between ozone and water-ice. This will contribute to understanding the stability of carbon dioxide and atmospheric chemistry of Mars.&lt;/p&gt;&lt;p&gt;Ozone (O&lt;sub&gt;3&lt;/sub&gt;) can be used for tracking general circulation of the martian atmosphere and other trace chemicals, as well as acting as a proxy for water vapour. The photochemical break down of water vapour produces hydroxyl radicals known to participate in the destruction of ozone. The relationship between water vapour and ozone is therefore negatively correlated. Atmospheric water-ice concentrations may also follow this theory. The photochemical reactions between ozone, water-ice clouds and hydroxyl radicals are poorly understood in the martian atmosphere due to the short half-life and rapid reaction rates of hydroxyl radicals. These reactions destroy ozone, as well as indirectly contributing to the water cycle and stability of carbon dioxide (measured by the CO&lt;sub&gt;2&lt;/sub&gt;&amp;#8211;CO ratio). However, the detection of ozone in the presence of water-ice clouds suggests the relationship between them is not always anti-correlated. Global climate models (GCMs) struggle to describe the chemical processes occurring within water-ice clouds. For example, the heterogeneous photochemistry described in the LMD (Laboratoire de M&amp;#233;t&amp;#233;orologie Dynamique) GCM did not significantly improve the model. This leads to the following questions:&lt;em&gt; what is the relationship between water-ice clouds and ozone, and can the chemical reactions of hydroxyl radicals occurring within water-ice clouds be determined through this relationship?&lt;/em&gt;&lt;/p&gt;&lt;p&gt;This project aims to address these questions using nadir and occultation retrievals of ozone and water-ice clouds, potentially using retrievals from the UVIS instrument aboard NOMAD (Nadir and Occultation for Mars Discovery), ExoMars Trace Gas Orbiter. Analysis will include temporal and spatial binning of data to help identify any patterns present. Correlation tests will be conducted to determine the significance of any relationship at short term and seasonal scales along a range of zonally averaged latitude photochemical model from the LMD-UK GCM will be used to further explore the chemical processes.&lt;/p&gt;&lt;p&gt;Interactions between hydroxyl radicals and the surface of water-ice clouds are poorly understood. Ozone abundance is greatest in the winter at the polar regions, which also coincides with the appearance of the polar hood clouds. The use of nadir observations will enable the comparison between total column of ozone abundance at high latitudes (&gt;60&amp;#176;S) in a range of varying water-ice cloud opacities, as well as the equatorial region (30&amp;#176;S &amp;#8211; 30&amp;#176;N) during aphelion. Water-ice clouds may remove hydroxyl radicals responsible for the destruction of ozone and thus the previously assumed anticorrelation between ozone and water-ice will not hold. The project will therefore assess the hypothesis that: &lt;em&gt;water-ice clouds may act as a sink for hydroxyl radicals.&lt;/em&gt;&lt;/p&gt;


Sign in / Sign up

Export Citation Format

Share Document